INCLUDE "debug.ml" INCLUDE "utils.ml" type jump_kind = [ `TAG of Tag.t | `CONTAINS of string | `NOTHING ] let cpt_trans = ref 0 let miss_trans = ref 0 let cpt_eval = ref 0 let miss_eval = ref 0 let gen_id = let id = ref (-1) in fun () -> incr id;!id let h_union = Hashtbl.create 4097 let pt_cup s1 s2 = (* special case, since this is a union we want hash(s1,s2) = hash(s2,s1) *) let x = Ptset.hash s1 and y = Ptset.hash s2 in let h = if x < y then HASHINT2(x,y) else HASHINT2(y,x) in try Hashtbl.find h_union h with | Not_found -> let s = Ptset.union s1 s2 in Hashtbl.add h_union h s;s module State = struct type t = int let mk = gen_id end let mk_state = State.mk type state = State.t type formula_expr = | False | True | Or of formula * formula | And of formula * formula | Atom of ([ `Left | `Right | `LLeft | `RRight ]*bool*state) and formula = { fid: int; fkey : int; pos : formula_expr; neg : formula; st : (Ptset.t*Ptset.t*Ptset.t)*(Ptset.t*Ptset.t*Ptset.t); size: int; } external hash_const_variant : [> ] -> int = "%identity" external vb : bool -> int = "%identity" let hash_node_form t = match t with | False -> 0 | True -> 1 | And(f1,f2) -> (2+17*f1.fkey + 37*f2.fkey) (*land max_int *) | Or(f1,f2) -> (3+101*f1.fkey + 253*f2.fkey) (*land max_int *) | Atom(v,b,s) -> HASHINT3(hash_const_variant v,(3846*(vb b) +257),s) module FormNode = struct type t = formula let hash t = t.fkey let equal f1 f2 = if f1.fid == f2.fid || f1.fkey == f2.fkey || f1.pos == f2.pos then true else match f1.pos,f2.pos with | False,False | True,True -> true | Atom(d1,b1,s1), Atom(d2,b2,s2) when (b1==b2) && (s1==s2) && (d1 = d2) -> true | Or(g1,g2),Or(h1,h2) | And(g1,g2),And(h1,h2) -> g1.fid == h1.fid && g2.fid == h2.fid | _ -> false end module WH = Weak.Make(FormNode) let f_pool = WH.create 107 let empty_triple = Ptset.empty,Ptset.empty,Ptset.empty let empty_hex = empty_triple,empty_triple let true_,false_ = let rec t = { fid = 1; pos = True; fkey=1; neg = f ; st = empty_hex; size =1; } and f = { fid = 0; pos = False; fkey=0; neg = t; st = empty_hex; size = 1; } in WH.add f_pool f; WH.add f_pool t; t,f let is_true f = f.fid == 1 let is_false f = f.fid == 0 let cons pos neg s1 s2 size1 size2 = let rec pnode = { fid = gen_id (); fkey = hash_node_form pos; pos = pos; neg = nnode; st = s1; size = size1;} and nnode = { fid = gen_id (); pos = neg; fkey = hash_node_form neg; neg = pnode; st = s2; size = size2; } in (WH.merge f_pool pnode),(WH.merge f_pool nnode) let atom_ d p s = let si = Ptset.singleton s in let ss = match d with | `Left -> (si,Ptset.empty,si),empty_triple | `Right -> empty_triple,(si,Ptset.empty,si) | `LLeft -> (Ptset.empty,si,si),empty_triple | `RRight -> empty_triple,(Ptset.empty,si,si) in fst (cons (Atom(d,p,s)) (Atom(d,not p,s)) ss ss 1 1) let union_hex ((l1,ll1,lll1),(r1,rr1,rrr1)) ((l2,ll2,lll2),(r2,rr2,rrr2)) = (pt_cup l1 l2 ,pt_cup ll1 ll2,pt_cup lll1 lll2), (pt_cup r1 r2 ,pt_cup rr1 rr2,pt_cup rrr1 rrr2) let merge_states f1 f2 = let sp = union_hex f1.st f2.st and sn = union_hex f1.neg.st f2.neg.st in sp,sn let full_or_ f1 f2 = let f1,f2 = if f1.fid < f2.fid then f2,f1 else f1,f2 in let sp,sn = merge_states f1 f2 in let psize = f1.size + f2.size in let nsize = f1.neg.size + f2.neg.size in fst (cons (Or(f1,f2)) (And(f1.neg,f2.neg)) sp sn psize nsize ) let or_ f1 f2 = let f1,f2 = if f1.fid < f2.fid then f2,f1 else f1,f2 in if is_true f1 || is_true f2 then true_ else if is_false f1 && is_false f2 then false_ else if is_false f1 then f2 else if is_false f2 then f1 else let psize = f1.size + f2.size in let nsize = f1.neg.size + f2.neg.size in let sp,sn = merge_states f1 f2 in fst (cons (Or(f1,f2)) (And(f1.neg,f2.neg)) sp sn psize nsize) let and_ f1 f2 = let f1,f2 = if f1.fid < f2.fid then f2,f1 else f1,f2 in if is_true f1 && is_true f2 then true_ else if is_false f1 || is_false f2 then false_ else if is_true f1 then f2 else if is_true f2 then f1 else let psize = f1.size + f2.size in let nsize = f1.neg.size + f2.neg.size in let sp,sn = merge_states f1 f2 in fst (cons (And(f1,f2)) (Or(f1.neg,f2.neg)) sp sn psize nsize) let not_ f = f.neg let k_hash (s,t) = HASHINT2(Ptset.hash s,Tag.hash t) module HTagSetKey = struct type t = Ptset.t*Tag.t let equal (s1,s2) (t1,t2) = (s2 == t2) && Ptset.equal s1 t1 let hash = k_hash end module HTagSet = Hashtbl.Make(HTagSetKey) type skiplist = Nothing | All | Zero of skiplist | One of skiplist | Two of skiplist | Three of skiplist | Four of skiplist | Five of skiplist | Six of skiplist | Seven of skiplist | Eight of skiplist | Nine of skiplist type formlist = Nil | Cons of state*formula*int*bool*formlist type 'a t = { id : int; mutable states : Ptset.t; init : Ptset.t; mutable final : Ptset.t; universal : Ptset.t; starstate : Ptset.t option; (* Transitions of the Alternating automaton *) phi : (state,(TagSet.t*(bool*formula*bool)) list) Hashtbl.t; sigma : (int,('a t -> Tree.t -> Tree.t -> Ptset.t*'a)) Hashtbl.t; } module Pair (X : Set.OrderedType) (Y : Set.OrderedType) = struct type t = X.t*Y.t let compare (x1,y1) (x2,y2) = let r = X.compare x1 x2 in if r == 0 then Y.compare y1 y2 else r end module PL = Set.Make (Pair (Ptset) (Ptset)) let pr_st ppf l = Format.fprintf ppf "{"; begin match l with | [] -> () | [s] -> Format.fprintf ppf " %i" s | p::r -> Format.fprintf ppf " %i" p; List.iter (fun i -> Format.fprintf ppf "; %i" i) r end; Format.fprintf ppf " }" let rec pr_frm ppf f = match f.pos with | True -> Format.fprintf ppf "⊤" | False -> Format.fprintf ppf "⊥" | And(f1,f2) -> Format.fprintf ppf "("; (pr_frm ppf f1); Format.fprintf ppf ") ∧ ("; (pr_frm ppf f2); Format.fprintf ppf ")" | Or(f1,f2) -> (pr_frm ppf f1); Format.fprintf ppf " ∨ "; (pr_frm ppf f2); | Atom(dir,b,s) -> Format.fprintf ppf "%s%s[%i]" (if b then "" else "¬") (match dir with | `Left -> "↓₁" | `Right -> "↓₂" | `LLeft -> "⇓₁" | `RRight -> "⇓₂") s let dump ppf a = Format.fprintf ppf "Automaton (%i) :\n" a.id; Format.fprintf ppf "States : "; pr_st ppf (Ptset.elements a.states); Format.fprintf ppf "\nInitial states : "; pr_st ppf (Ptset.elements a.init); Format.fprintf ppf "\nFinal states : "; pr_st ppf (Ptset.elements a.final); Format.fprintf ppf "\nUniversal states : "; pr_st ppf (Ptset.elements a.universal); Format.fprintf ppf "\nAlternating transitions :\n------------------------------\n"; let l = Hashtbl.fold (fun k t acc -> (List.map (fun (t,(m,f,p)) -> (t,k),(m,f,p)) t)@ acc) a.phi [] in let l = List.sort (fun ((tsx,x),_) ((tsy,y),_) -> if x-y == 0 then TagSet.compare tsx tsy else x-y) l in List.iter (fun ((ts,q),(b,f,_)) -> let s = if TagSet.is_finite ts then "{" ^ (TagSet.fold (fun t a -> a ^ " '" ^ (Tag.to_string t)^"'") ts "") ^" }" else let cts = TagSet.neg ts in if TagSet.is_empty cts then "*" else (TagSet.fold (fun t a -> a ^ " " ^ (Tag.to_string t)) cts "*\\{" )^ "}" in Format.fprintf ppf "(%s,%i) %s " s q (if b then "=>" else "->"); pr_frm ppf f; Format.fprintf ppf "\n")l; Format.fprintf ppf "NFA transitions :\n------------------------------\n"; (* HTagSet.iter (fun (qs,t) (disp,b,_,flist,_,_) -> let (ls,lls,_),(rs,rrs,_) = List.fold_left (fun ((a1,b1,c1),(a2,b2,c2)) (_,f) -> let (x1,y1,z1),(x2,y2,z2) = f.st in ((Ptset.union x1 a1),(Ptset.union y1 b1),(Ptset.union c1 z1)), ((Ptset.union x2 a2),(Ptset.union y2 b2),(Ptset.union c2 z2))) ((Ptset.empty,Ptset.empty,Ptset.empty), (Ptset.empty,Ptset.empty,Ptset.empty)) flist in pr_st ppf (Ptset.elements qs); Format.fprintf ppf ",%s %s " (Tag.to_string t) (if b then "=>" else "->"); List.iter (fun (q,f) -> Format.fprintf ppf "\n%i," q; pr_frm ppf f) flist; Format.fprintf ppf "\nleft="; pr_st ppf (Ptset.elements ls); Format.fprintf ppf " , "; pr_st ppf (Ptset.elements lls); Format.fprintf ppf ", right="; pr_st ppf (Ptset.elements rs); Format.fprintf ppf ", "; pr_st ppf (Ptset.elements rrs); Format.fprintf ppf ", first=%s, next=%s\n\n" disp.flabel disp.nlabel; ) a.sigma; *) Format.fprintf ppf "=======================================\n%!" module Transitions = struct type t = state*TagSet.t*bool*formula*bool let ( ?< ) x = x let ( >< ) state (l,b) = state,(l,b,false) let ( ><@ ) state (l,b) = state,(l,b,true) let ( >=> ) (state,(label,mark,pred)) form = (state,label,mark,form,pred) let ( +| ) f1 f2 = or_ f1 f2 let ( *& ) f1 f2 = and_ f1 f2 let ( ** ) d s = atom_ d true s end type transition = Transitions.t let equal_trans (q1,t1,m1,f1,_) (q2,t2,m2,f2,_) = (q1 == q2) && (TagSet.equal t1 t2) && (m1 == m2) (*&& (equal_form f1 f2) *) module HFEval = Hashtbl.Make( struct type t = int*Ptset.t*Ptset.t let equal (a,b,c) (d,e,f) = a==d && (Ptset.equal b e) && (Ptset.equal c f) let hash (a,b,c) = HASHINT3(a,Ptset.hash b,Ptset.hash c) end) let hfeval = HFEval.create 4097 let eval_form_bool f s1 s2 = let rec eval f = match f.pos with (* test some inlining *) | True -> true,true,true | False -> false,false,false | _ -> try HFEval.find hfeval (f.fid,s1,s2) with | Not_found -> let r = match f.pos with | Atom((`Left|`LLeft),b,q) -> if b == (Ptset.mem q s1) then (true,true,false) else false,false,false | Atom(_,b,q) -> if b == (Ptset.mem q s2) then (true,false,true) else false,false,false | Or(f1,f2) -> let b1,rl1,rr1 = eval f1 in if b1 && rl1 && rr1 then (true,true,true) else let b2,rl2,rr2 = eval f2 in let rl1,rr1 = if b1 then rl1,rr1 else false,false and rl2,rr2 = if b2 then rl2,rr2 else false,false in (b1 || b2, rl1||rl2,rr1||rr2) | And(f1,f2) -> let b1,rl1,rr1 = eval f1 in if b1 && rl1 && rr1 then (true,true,true) else if b1 then let b2,rl2,rr2 = eval f2 in if b2 then (true,rl1||rl2,rr1||rr2) else (false,false,false) else (false,false,false) | _ -> assert false in HFEval.add hfeval (f.fid,s1,s2) r; r in eval f let form_list_fold_left f acc fl = let rec loop acc fl = match fl with | Nil -> acc | Cons(s,frm,h,m,fll) -> loop (f acc s frm h m) fll in loop acc fl let h_formlist = Hashtbl.create 4096 let rec eval_formlist ?(memo=true) s1 s2 fl = match fl with | Nil -> Ptset.empty,false,false,false,false | Cons(q,f,h,mark,fll) -> let k = (h,Ptset.hash s1,Ptset.hash s2,mark) in try if memo then Hashtbl.find h_formlist k else (raise Not_found) with Not_found -> let s,b',b1',b2',amark = eval_formlist (~memo:memo) s1 s2 fll in let b,b1,b2 = eval_form_bool f s1 s2 in let r = if b then (Ptset.add q s, b, b1'||b1,b2'||b2,mark||amark) else s,b',b1',b2',amark in(* Format.fprintf Format.err_formatter "\nEvaluating formula (%i) %i %s" h q (if mark then "=>" else "->"); pr_frm (Format.err_formatter) f; Format.fprintf Format.err_formatter " in context "; pr_st Format.err_formatter (Ptset.elements s1); Format.fprintf Format.err_formatter ", "; pr_st Format.err_formatter (Ptset.elements s2); Format.fprintf Format.err_formatter " result is %b\n%!" b; *) (Hashtbl.add h_formlist k r;r) let tags_of_state a q = Hashtbl.fold (fun p l acc -> if p == q then List.fold_left (fun acc (ts,(_,_,aux)) -> if aux then acc else TagSet.cup ts acc) acc l else acc) a.phi TagSet.empty let tags a qs = let ts = Ptset.fold (fun q acc -> TagSet.cup acc (tags_of_state a q)) qs TagSet.empty in if TagSet.is_finite ts then `Positive(TagSet.positive ts) else `Negative(TagSet.negative ts) let inter_text a b = match b with | `Positive s -> let r = Ptset.inter a s in (r,Ptset.mem Tag.pcdata r, true) | `Negative s -> let r = Ptset.diff a s in (r, Ptset.mem Tag.pcdata r, false) let mk_nil_ctx x _ = Tree.mk_nil x let next_sibling_ctx x _ = Tree.next_sibling x let r_ignore _ x = x let set_get_tag r t = r := (fun _ -> t) module type ResultSet = sig type t val empty : t val cons : Tree.t -> t -> t val concat : t -> t -> t val iter : (Tree.t -> unit) -> t -> unit val fold : (Tree.t -> 'a -> 'a) -> t -> 'a -> 'a val map : (Tree.t -> Tree.t) -> t -> t val length : t -> int end module Integer : ResultSet = struct type t = int let empty = 0 let cons _ x = x+1 let concat x y = x + y let iter _ _ = failwith "iter not implemented" let fold _ _ _ = failwith "fold not implemented" let map _ _ = failwith "map not implemented" let length x = x end module IdSet : ResultSet = struct type node = Nil | Cons of Tree.t * node | Concat of node*node and t = { node : node; length : int } let empty = { node = Nil; length = 0 } let cons e t = { node = Cons(e,t.node); length = t.length+1 } let concat t1 t2 = { node = Concat(t1.node,t2.node); length = t1.length+t2.length } let append e t = { node = Concat(t.node,Cons(e,Nil)); length = t.length+1 } let fold f l acc = let rec loop acc t = match t with | Nil -> acc | Cons (e,t) -> loop (f e acc) t | Concat (t1,t2) -> loop (loop acc t1) t2 in loop acc l.node let length l = l.length let iter f l = let rec loop = function | Nil -> () | Cons (e,t) -> f e; loop t | Concat(t1,t2) -> loop t1;loop t2 in loop l.node let map f l = let rec loop = function | Nil -> Nil | Cons(e,t) -> Cons(f e, loop t) | Concat(t1,t2) -> Concat(loop t1,loop t2) in { l with node = loop l.node } end module Run (RS : ResultSet) = struct let fmt = Format.err_formatter let pr x = Format.fprintf fmt x module Formlist = struct type t = formlist let nil : t = Nil let cons q f i m l = Cons(q,f,i,m,l) let hash = function Nil -> 0 | Cons(_,_,i,_,_) -> max_int land i let pr fmt l = let rec loop = function | Nil -> () | Cons(q,f,_,m,l) -> Format.fprintf fmt "%i %s" q (if m then "=>" else "->"); pr_frm fmt f; Format.fprintf fmt "\n%!"; loop l in loop l end type ptset_list = Nil | Cons of Ptset.t*int*ptset_list let hpl l = match l with | Nil -> 0 | Cons (_,i,_) -> i let cons s l = Cons (s,(Ptset.hash s) + 65599 * (hpl l), l) let rec empty_size n = if n == 0 then Nil else cons Ptset.empty (empty_size (n-1)) let fold_pl f l acc = let rec loop l acc = match l with Nil -> acc | Cons(s,h,pl) -> loop pl (f s h acc) in loop l acc let map_pl f l = let rec loop = function Nil -> Nil | Cons(s,h,ll) -> cons (f s) (loop ll) in loop l let iter_pl f l = let rec loop = function Nil -> () | Cons(s,h,ll) -> (f s);(loop ll) in loop l let rev_pl l = let rec loop acc l = match l with | Nil -> acc | Cons(s,_,ll) -> loop (cons s acc) ll in loop Nil l let rev_map_pl f l = let rec loop acc l = match l with | Nil -> acc | Cons(s,_,ll) -> loop (cons (f s) acc) ll in loop Nil l let td_trans = Hashtbl.create 4096 let choose_jump tagset qtags1 qtagsn a f_nil f_text f_t1 f_s1 f_tn f_sn f_notext = let tags1,hastext1,fin1 = inter_text tagset (tags a qtags1) in let tagsn,hastextn,finn = inter_text tagset (tags a qtagsn) in (* Format.fprintf Format.err_formatter "Tags below states "; pr_st Format.err_formatter (Ptset.elements qtags1); Format.fprintf Format.err_formatter " are { "; Ptset.iter (fun t -> Format.fprintf Format.err_formatter "%s " (Tag.to_string t)) tags1; Format.fprintf Format.err_formatter "}, %b,%b\n%!" hastext1 fin1; Format.fprintf Format.err_formatter "Tags below states "; pr_st Format.err_formatter (Ptset.elements qtagsn); Format.fprintf Format.err_formatter " are { "; Ptset.iter (fun t -> Format.fprintf Format.err_formatter "%s " (Tag.to_string t)) tagsn; Format.fprintf Format.err_formatter "}, %b,%b\n%!" hastextn finn; *) if (hastext1||hastextn) then f_text (* jumping to text nodes doesn't work really well *) else if (Ptset.is_empty tags1) && (Ptset.is_empty tagsn) then f_nil else if (Ptset.is_empty tagsn) then if (Ptset.is_singleton tags1) then f_t1 (Ptset.choose tags1) (* TaggedChild/Sibling *) else f_s1 tags1 (* SelectChild/Sibling *) else if (Ptset.is_empty tags1) then if (Ptset.is_singleton tagsn) then f_tn (Ptset.choose tagsn) (* TaggedDesc/Following *) else f_sn tagsn (* SelectDesc/Following *) else f_notext let choose_jump_down a b c d = choose_jump a b c d (Tree.mk_nil) (Tree.text_below) (*fun x -> let i,j = Tree.doc_ids x in let res = Tree.text_below x in Printf.printf "Calling text_below %s (tag=%s), docids= (%i,%i), res=%s\n" (Tree.dump_node x) (Tag.to_string (Tree.tag x)) i j (Tree.dump_node res); res*) (fun _ -> Tree.node_child ) (* !! no tagged_child in Tree.ml *) (fun _ -> Tree.node_child ) (* !! no select_child in Tree.ml *) (Tree.tagged_desc) (fun _ -> Tree.node_child ) (* !! no select_desc *) (Tree.node_child) let choose_jump_next a b c d = choose_jump a b c d (fun t _ -> Tree.mk_nil t) (Tree.text_next) (*fun x y -> let i,j = Tree.doc_ids x in let res = Tree.text_next x y in Printf.printf "Calling text_next %s (tag=%s) ctx=%s, docids= (%i,%i), res=%s\n" (Tree.dump_node x) (Tag.to_string (Tree.tag x)) (Tree.dump_node y) i j (Tree.dump_node res); res*) (fun _ -> Tree.node_sibling_ctx) (* !! no tagged_sibling in Tree.ml *) (fun _ -> Tree.node_sibling_ctx) (* !! no select_child in Tree.ml *) (Tree.tagged_foll_below) (fun _ -> Tree.node_sibling_ctx) (* !! no select_foll *) (Tree.node_sibling_ctx) let get_trans slist tag a t = try Hashtbl.find td_trans (tag,hpl slist) with | Not_found -> let fl_list,llist,rlist,ca,da,sa,fa = fold_pl (fun set _ (fll_acc,lllacc,rllacc,ca,da,sa,fa) -> (* For each set *) let fl,ll,rr,ca,da,sa,fa = Ptset.fold (fun q acc -> fst ( List.fold_left (fun (((fl_acc,ll_acc,rl_acc,c_acc,d_acc,s_acc,f_acc),h_acc) as acc) (ts,(m,f,_)) -> if (TagSet.mem tag ts) then let (child,desc,below),(sibl,foll,after) = f.st in let h_acc = HASHINT3(h_acc,f.fid,HASHINT2(q,vb m)) in ((Formlist.cons q f h_acc m fl_acc, Ptset.union ll_acc below, Ptset.union rl_acc after, Ptset.union child c_acc, Ptset.union desc d_acc, Ptset.union sibl s_acc, Ptset.union foll f_acc), h_acc) else acc ) (acc,0) ( try Hashtbl.find a.phi q with Not_found -> Printf.eprintf "Looking for state %i, doesn't exist!!!\n%!" q;[] )) ) set (Formlist.nil,Ptset.empty,Ptset.empty,ca,da,sa,fa) in fl::fll_acc, cons ll lllacc, cons rr rllacc,ca,da,sa,fa) slist ([],Nil,Nil,Ptset.empty,Ptset.empty,Ptset.empty,Ptset.empty) in (* Logic to chose the first and next function *) let tags_below,tags_after = Tree.tags t tag in let first = choose_jump_down tags_below ca da a and next = choose_jump_next tags_after sa fa a in let v = (fl_list,llist,rlist,first,next) in Hashtbl.add td_trans (tag, hpl slist) v; v let merge rb rb1 rb2 mark t res1 res2 = if rb then let res1 = if rb1 then res1 else RS.empty and res2 = if rb2 then res2 else RS.empty in if mark then RS.cons t (RS.concat res1 res2) else RS.concat res1 res2 else RS.empty let top_down ?(noright=false) a t slist ctx slot_size = let pempty = empty_size slot_size in let eval_fold2_slist fll sl1 sl2 res1 res2 t = let res = Array.copy res1 in let rec fold l1 l2 fll i aq = match l1,l2,fll with | Cons(s1,_,ll1), Cons(s2, _ ,ll2),fl::fll -> let r',rb,rb1,rb2,mark = eval_formlist s1 s2 fl in (* let _ = pr "Evaluation context : "; pr_st fmt (Ptset.elements s1); pr_st fmt (Ptset.elements s2); pr "Formlist (%i) : " (Formlist.hash fl); Formlist.pr fmt fl; pr "Results : "; pr_st fmt (Ptset.elements r'); pr ", %b %b %b %b\n%!" rb rb1 rb2 mark in *) let _ = res.(i) <- merge rb rb1 rb2 mark t res1.(i) res2.(i) in fold ll1 ll2 fll (i+1) (cons r' aq) | Nil, Nil,[] -> aq,res | _ -> assert false in fold sl1 sl2 fll 0 Nil in let null_result() = (pempty,Array.make slot_size RS.empty) in let rec loop t slist ctx = let (a,b) = if Tree.is_nil t then null_result() else let tag = Tree.tag t in let fl_list,llist,rlist,first,next = get_trans slist tag a t in (* let _ = pr "For tag %s,node %s, returning formulae list: \n%!" (Tag.to_string tag) (Tree.dump_node t); List.iter (fun f -> Formlist.pr fmt f;pr "\n%!") fl_list in*) let sl1,res1 = loop (first t) llist t in let sl2,res2 = loop (next t ctx) rlist ctx in eval_fold2_slist fl_list sl1 sl2 res1 res2 t in (* let _ = pr "Inside topdown call: tree was %s, tag = %s" (Tree.dump_node t) (if Tree.is_nil t then "###" else Tag.to_string (Tree.tag t)); iter_pl (fun s -> (pr_st fmt (Ptset.elements s))) a; Array.iter (fun i -> pr "%i" (RS.length i)) b; pr "\n%!"; in*) (a,b) in let loop_no_right t slist ctx = if Tree.is_nil t then null_result() else let tag = Tree.tag t in let fl_list,llist,rlist,first,next = get_trans slist tag a t in let sl1,res1 = loop (first t) llist t in let sl2,res2 = null_result() in eval_fold2_slist fl_list sl1 sl2 res1 res2 t in (if noright then loop_no_right else loop) t slist ctx let run_top_down a t = let init = cons a.init Nil in let _,res = top_down a t init t 1 in res.(0) ;; module Configuration = struct module Ptss = Set.Make(Ptset) module IMap = Map.Make(Ptset) type t = { hash : int; sets : Ptss.t; results : RS.t IMap.t } let empty = { hash = 0; sets = Ptss.empty; results = IMap.empty; } let is_empty c = Ptss.is_empty c.sets let add c s r = if Ptss.mem s c.sets then { c with results = IMap.add s (RS.concat r (IMap.find s c.results)) c.results} else { hash = HASHINT2(c.hash,Ptset.hash s); sets = Ptss.add s c.sets; results = IMap.add s r c.results } let pr fmt c = Format.fprintf fmt "{"; Ptss.iter (fun s -> pr_st fmt (Ptset.elements s); Format.fprintf fmt " ") c.sets; Format.fprintf fmt "}\n%!"; IMap.iter (fun k d -> pr_st fmt (Ptset.elements k); Format.fprintf fmt "-> %i\n" (RS.length d)) c.results; Format.fprintf fmt "\n%!" let merge c1 c2 = let acc1 = IMap.fold (fun s r acc -> IMap.add s (try RS.concat r (IMap.find s acc) with | Not_found -> r) acc) c1.results IMap.empty in let imap = IMap.fold (fun s r acc -> IMap.add s (try RS.concat r (IMap.find s acc) with | Not_found -> r) acc) c2.results acc1 in let h,s = Ptss.fold (fun s (ah,ass) -> (HASHINT2(ah,Ptset.hash s), Ptss.add s ass)) (Ptss.union c1.sets c2.sets) (0,Ptss.empty) in { hash = h; sets =s; results = imap } end let h_fold = Hashtbl.create 511 let fold_f_conf t slist fl_list conf dir= let rec loop sl fl acc = match sl,fl with |Nil,[] -> acc | Cons(s,hs,sll), formlist::fll -> let r',rb,rb1,rb2,mark = try Hashtbl.find h_fold (hs,Formlist.hash formlist,dir) with Not_found -> let res = if dir then eval_formlist ~memo:false s Ptset.empty formlist else eval_formlist ~memo:false Ptset.empty s formlist in (Hashtbl.add h_fold (hs,Formlist.hash formlist,dir) res;res) in(* let _ = pr "Evaluating on set (%s) with tree %s=%s" (if dir then "left" else "right") (Tag.to_string (Tree.tag t)) (Tree.dump_node t) ; pr_st fmt (Ptset.elements s); pr ", formualae (with hash %i): \n" (Formlist.hash formlist); Formlist.pr fmt formlist; pr "result is "; pr_st fmt (Ptset.elements r'); pr " %b %b %b %b \n%!" rb rb1 rb2 mark ; in *) if rb && ((dir&&rb1)|| ((not dir) && rb2)) then let acc = let old_r = try Configuration.IMap.find s conf.Configuration.results with Not_found -> RS.empty in Configuration.add acc r' (if mark then RS.cons t old_r else old_r) in loop sll fll acc else loop sll fll acc | _ -> assert false in loop slist fl_list Configuration.empty let h_trans = Hashtbl.create 4096 let get_up_trans slist ptag a tree = let key = (HASHINT2(hpl slist,Tag.hash ptag)) in try Hashtbl.find h_trans key with | Not_found -> let f_list,_ = Hashtbl.fold (fun q l acc -> List.fold_left (fun (fl_acc,h_acc) (ts,(m,f,_)) -> if TagSet.mem ptag ts then let h_acc = HASHINT3(h_acc,f.fid,HASHINT2(q,vb m)) in (Formlist.cons q f h_acc m fl_acc, h_acc) else (fl_acc,h_acc)) acc l) a.phi (Formlist.nil,0) in let res = fold_pl (fun _ _ acc -> f_list::acc) slist [] in (Hashtbl.add h_trans key res;res) let h_tdconf = Hashtbl.create 511 let rec bottom_up a tree conf next jump_fun root dotd init accu = if (not dotd) && (Configuration.is_empty conf ) then (* let _ = pr "Returning early from %s, with accu %i, next is %s\n%!" (Tree.dump_node tree) (Obj.magic accu) (Tree.dump_node next) in *) accu,conf,next else (* let _ = pr "Going bottom up for tree with tag %s configuration is" (if Tree.is_nil tree then "###" else Tag.to_string (Tree.tag tree)); Configuration.pr fmt conf in *) let below_right = Tree.is_below_right tree next in (* let _ = Format.fprintf Format.err_formatter "below_right %s %s = %b\n%!" (Tree.dump_node tree) (Tree.dump_node next) below_right in *) let accu,rightconf,next_of_next = if below_right then (* jump to the next *) (* let _ = pr "Jumping to %s tag %s\n%!" (Tree.dump_node next) (Tag.to_string (Tree.tag next)) in *) bottom_up a next conf (jump_fun next) jump_fun (Tree.next_sibling tree) true init accu else accu,Configuration.empty,next in (* let _ = if below_right then pr "Returning from jump to next = %s\n" (Tree.dump_node next)in *) let sub = if dotd then if below_right then (* only recurse on the left subtree *) (* let _ = pr "Topdown on left subtree\n%!" in *) prepare_topdown a tree true else (* let _ = pr "Topdown on whole tree\n%!" in *) prepare_topdown a tree false else conf in let conf,next = (Configuration.merge rightconf sub, next_of_next) in if Tree.equal tree root then (* let _ = pr "Stopping at root, configuration after topdown is:" ; Configuration.pr fmt conf; pr "\n%!" in *) accu,conf,next else let parent = Tree.binary_parent tree in let ptag = Tree.tag parent in let dir = Tree.is_left tree in let slist = Configuration.Ptss.fold (fun e a -> cons e a) conf.Configuration.sets Nil in let fl_list = get_up_trans slist ptag a parent in let slist = rev_pl (slist) in (* let _ = pr "Current conf is : %s " (Tree.dump_node tree); Configuration.pr fmt conf; pr "\n" in *) let newconf = fold_f_conf parent slist fl_list conf dir in (* let _ = pr "New conf before pruning is (dir=%b):" dir; Configuration.pr fmt newconf ; pr "accu is %i\n" (RS.length accu); in *) let accu,newconf = Configuration.IMap.fold (fun s res (ar,nc) -> if Ptset.intersect s init then ( RS.concat res ar ,nc) else (ar,Configuration.add nc s res)) (newconf.Configuration.results) (accu,Configuration.empty) in (* let _ = pr "New conf after pruning is (dir=%b):" dir; Configuration.pr fmt newconf ; pr "accu is %i\n" (RS.length accu); in *) bottom_up a parent newconf next jump_fun root false init accu and prepare_topdown a t noright = let tag = Tree.tag t in (* pr "Going top down on tree with tag %s = %s " (if Tree.is_nil t then "###" else (Tag.to_string(Tree.tag t))) (Tree.dump_node t); *) let r = try Hashtbl.find h_tdconf tag with | Not_found -> let res = Hashtbl.fold (fun q l acc -> if List.exists (fun (ts,_) -> TagSet.mem tag ts) l then Ptset.add q acc else acc) a.phi Ptset.empty in Hashtbl.add h_tdconf tag res;res in (* let _ = pr ", among "; pr_st fmt (Ptset.elements r); pr "\n%!"; in *) let r = cons r Nil in let set,res = top_down (~noright:noright) a t r t 1 in let set = match set with | Cons(x,_,Nil) ->x | _ -> assert false in (* pr "Result of topdown run is %!"; pr_st fmt (Ptset.elements set); pr ", number is %i\n%!" (RS.length res.(0)); *) Configuration.add Configuration.empty set res.(0) let run_bottom_up a t k = let trlist = Hashtbl.find a.phi (Ptset.choose a.init) in let init = List.fold_left (fun acc (_,(_,f,_)) -> Ptset.union acc (let (_,_,l) = fst (f.st) in l)) Ptset.empty trlist in let tree1,jump_fun = match k with | `TAG (tag) -> (*Tree.tagged_lowest t tag, fun tree -> Tree.tagged_next tree tag*) (Tree.tagged_desc tag t, fun tree -> Tree.tagged_foll_below tag tree t) | `CONTAINS(_) -> (Tree.text_below t,fun tree -> Tree.text_next tree t) | _ -> assert false in let tree2 = jump_fun tree1 in let rec loop tree next acc = (* let _ = pr "\n_________________________\nNew iteration\n" in let _ = pr "Jumping to %s\n%!" (Tree.dump_node tree) in *) let acc,conf,next_of_next = bottom_up a tree Configuration.empty next jump_fun (Tree.root tree) true init acc in (* let _ = pr "End of first iteration, conf is:\n%!"; Configuration.pr fmt conf in *) let acc = Configuration.IMap.fold ( fun s res acc -> if Ptset.intersect init s then RS.concat res acc else acc) conf.Configuration.results acc in if Tree.is_nil next_of_next (*|| Tree.equal next next_of_next *)then acc else loop next_of_next (jump_fun next_of_next) acc in loop tree1 tree2 RS.empty end let top_down_count a t = let module RI = Run(Integer) in Integer.length (RI.run_top_down a t) let top_down a t = let module RI = Run(IdSet) in (RI.run_top_down a t) let bottom_up_count a t k = let module RI = Run(Integer) in Integer.length (RI.run_bottom_up a t k)