INCLUDE "debug.ml" INCLUDE "utils.ml" type jump_kind = [ `TAG of Tag.t | `CONTAINS of string | `NOTHING ] (* Todo : move elsewhere *) external vb : bool -> int = "%identity" module State : sig include Sigs.T with type t = int val make : unit -> t end = struct type t = int let make = let id = ref (-1) in fun () -> incr id;!id let compare = (-) let equal = (==) external hash : t -> int = "%identity" let print fmt x = Format.fprintf fmt "%i" x let dump fmt x = print fmt x let check x = if x < 0 then failwith (Printf.sprintf "State: Assertion %i < 0 failed" x) end module StateSet = struct include Ptset.Int let print ppf s = Format.pp_print_string ppf "{ "; iter (fun i -> Format.fprintf ppf "%i " i) s; Format.pp_print_string ppf "}"; Format.pp_print_flush ppf () end module Formula = struct type 'hcons expr = | False | True | Or of 'hcons * 'hcons | And of 'hcons * 'hcons | Atom of ([ `Left | `Right | `LLeft | `RRight ]*bool*State.t) type 'hcons node = { pos : 'hcons expr; mutable neg : 'hcons; st : (StateSet.t*StateSet.t*StateSet.t)*(StateSet.t*StateSet.t*StateSet.t); size: int; (* Todo check if this is needed *) } external hash_const_variant : [> ] -> int = "%identity" module rec HNode : Hcons.S with type data = Node.t = Hcons.Make (Node) and Node : Hashtbl.HashedType with type t = HNode.t node = struct type t = HNode.t node let equal x y = x.size == y.size && match x.pos,y.pos with | False,False | True,True -> true | Or(xf1,xf2),Or(yf1,yf2) | And(xf1,xf2),And(yf1,yf2) -> (HNode.equal xf1 yf1) && (HNode.equal xf2 yf2) | Atom(d1,p1,s1), Atom(d2,p2,s2) -> d1 == d2 && (p1==p2) && s1 == s2 | _ -> false let hash f = match f.pos with | False -> 0 | True -> 1 | Or (f1,f2) -> HASHINT3(PRIME2,HNode.uid f1,HNode.uid f2) | And (f1,f2) -> HASHINT3(PRIME3,HNode.uid f1,HNode.uid f2) | Atom(d,p,s) -> HASHINT4(PRIME4,hash_const_variant d,vb p,s) end type t = HNode.t let hash = HNode.hash let uid = HNode.uid let equal = HNode.equal let expr f = (HNode.node f).pos let st f = (HNode.node f ).st let size f = (HNode.node f).size let prio f = match expr f with | True | False -> 10 | Atom _ -> 8 | And _ -> 6 | Or _ -> 1 let rec print ?(parent=false) ppf f = if parent then Format.fprintf ppf "("; let _ = match expr f with | True -> Format.fprintf ppf "T" | False -> Format.fprintf ppf "F" | And(f1,f2) -> print ~parent:(prio f > prio f1) ppf f1; Format.fprintf ppf " ∧ "; print ~parent:(prio f > prio f2) ppf f2; | Or(f1,f2) -> (print ppf f1); Format.fprintf ppf " ∨ "; (print ppf f2); | Atom(dir,b,s) -> Format.fprintf ppf "%s%s[%i]" (if b then "" else "¬") (match dir with | `Left -> "↓₁" | `Right -> "↓₂" | `LLeft -> "⇓₁" | `RRight -> "⇓₂") s in if parent then Format.fprintf ppf ")" let print ppf f = print ~parent:false ppf f let is_true f = (expr f) == True let is_false f = (expr f) == False let cons pos neg s1 s2 size1 size2 = let nnode = HNode.make { pos = neg; neg = (Obj.magic 0); st = s2; size = size2 } in let pnode = HNode.make { pos = pos; neg = nnode ; st = s1; size = size1 } in (HNode.node nnode).neg <- pnode; (* works because the neg field isn't taken into account for hashing ! *) pnode,nnode let empty_triple = StateSet.empty,StateSet.empty,StateSet.empty let empty_hex = empty_triple,empty_triple let true_,false_ = cons True False empty_hex empty_hex 0 0 let atom_ d p s = let si = StateSet.singleton s in let ss = match d with | `Left -> (si,StateSet.empty,si),empty_triple | `Right -> empty_triple,(si,StateSet.empty,si) | `LLeft -> (StateSet.empty,si,si),empty_triple | `RRight -> empty_triple,(StateSet.empty,si,si) in fst (cons (Atom(d,p,s)) (Atom(d,not p,s)) ss ss 1 1) let not_ f = (HNode.node f).neg let union_hex ((l1,ll1,lll1),(r1,rr1,rrr1)) ((l2,ll2,lll2),(r2,rr2,rrr2)) = (StateSet.mem_union l1 l2 ,StateSet.mem_union ll1 ll2,StateSet.mem_union lll1 lll2), (StateSet.mem_union r1 r2 ,StateSet.mem_union rr1 rr2,StateSet.mem_union rrr1 rrr2) let merge_states f1 f2 = let sp = union_hex (st f1) (st f2) and sn = union_hex (st (not_ f1)) (st (not_ f2)) in sp,sn let order f1 f2 = if uid f1 < uid f2 then f2,f1 else f1,f2 let or_ f1 f2 = (* Tautologies: x|x, x|not(x) *) if equal f1 f2 then f1 else if equal f1 (not_ f2) then true_ else (* simplification *) if is_true f1 || is_true f2 then true_ else if is_false f1 && is_false f2 then false_ else if is_false f1 then f2 else if is_false f2 then f1 else (* commutativity of | *) let f1,f2 = order f1 f2 in let psize = (size f1) + (size f2) in let nsize = (size (not_ f1)) + (size (not_ f2)) in let sp,sn = merge_states f1 f2 in fst (cons (Or(f1,f2)) (And(not_ f1,not_ f2)) sp sn psize nsize) let and_ f1 f2 = (* Tautologies: x&x, x¬(x) *) if equal f1 f2 then f1 else if equal f1 (not_ f2) then false_ else (* simplifications *) if is_true f1 && is_true f2 then true_ else if is_false f1 || is_false f2 then false_ else if is_true f1 then f2 else if is_true f2 then f1 else (* commutativity of & *) let f1,f2 = order f1 f2 in let psize = (size f1) + (size f2) in let nsize = (size (not_ f1)) + (size (not_ f2)) in let sp,sn = merge_states f1 f2 in fst (cons (And(f1,f2)) (Or(not_ f1,not_ f2)) sp sn psize nsize) module Infix = struct let ( +| ) f1 f2 = or_ f1 f2 let ( *& ) f1 f2 = and_ f1 f2 let ( *+ ) d s = atom_ d true s let ( *- ) d s = atom_ d false s end end module Transition = struct type node = State.t*bool*Formula.t*bool include Hcons.Make(struct type t = node let hash (s,m,f,b) = HASHINT4(s,Formula.uid f,vb m,vb b) let equal (s,b,f,m) (s',b',f',m') = s == s' && b==b' && m==m' && Formula.equal f f' end) let print ppf f = let (st,mark,form,b) = node f in Format.fprintf ppf "%i %s" st (if mark then "⇒" else "→"); Formula.print ppf form; Format.fprintf ppf "%s%!" (if b then " (b)" else "") module Infix = struct let ( ?< ) x = x let ( >< ) state (l,mark) = state,(l,mark,false) let ( ><@ ) state (l,mark) = state,(l,mark,true) let ( >=> ) (state,(label,mark,bur)) form = (state,label,(make (state,mark,form,bur))) end end module TransTable = Hashtbl module Formlist = struct include Hlist.Make(Transition) type data = t node let make _ = failwith "make" let print ppf fl = iter (fun t -> Transition.print ppf t; Format.pp_print_newline ppf ()) fl end type 'a t = { id : int; mutable states : Ptset.Int.t; init : Ptset.Int.t; starstate : Ptset.Int.t option; (* Transitions of the Alternating automaton *) trans : (State.t,(TagSet.t*Transition.t) list) Hashtbl.t; query_string: string; } let dump ppf a = Format.fprintf ppf "Automaton (%i) :\n" a.id; Format.fprintf ppf "States : "; StateSet.print ppf a.states; Format.fprintf ppf "\nInitial states : "; StateSet.print ppf a.init; Format.fprintf ppf "\nAlternating transitions :\n"; let l = Hashtbl.fold (fun k t acc -> (List.map (fun (ts,tr) -> (ts,k),Transition.node tr) t) @ acc) a.trans [] in let l = List.sort (fun ((tsx,x),_) ((tsy,y),_) -> if y-x == 0 then TagSet.compare tsy tsx else y-x) l in let maxh,maxt,l_print = List.fold_left ( fun (maxh,maxt,l) ((ts,q),(_,b,f,_)) -> let s = if TagSet.is_finite ts then "{" ^ (TagSet.fold (fun t a -> a ^ " '" ^ (Tag.to_string t)^"'") ts "") ^" }" else let cts = TagSet.neg ts in if TagSet.is_empty cts then "*" else (TagSet.fold (fun t a -> a ^ " " ^ (Tag.to_string t)) cts "*\\{" )^ "}" in let s = Printf.sprintf "(%s,%i)" s q in let s_frm = Formula.print Format.str_formatter f; Format.flush_str_formatter() in (max (String.length s) maxh, max (String.length s_frm) maxt, (s,(if b then "⇒" else "→"),s_frm)::l)) (0,0,[]) l in Format.fprintf ppf "%s\n%!" (String.make (maxt+maxh+3) '_'); List.iter (fun (s,m,f) -> let s = s ^ (String.make (maxh-(String.length s)) ' ') in Format.fprintf ppf "%s %s %s\n" s m f) l_print; Format.fprintf ppf "%s\n%!" (String.make (maxt+maxh+3) '_') module FormTable = Hashtbl.Make(struct type t = Formula.t*StateSet.t*StateSet.t let equal (f1,s1,t1) (f2,s2,t2) = f1 == f2 && s1 == s2 && t1 == t2 let hash (f,s,t) = HASHINT3(Formula.uid f ,StateSet.uid s,StateSet.uid t) end) (* Too slow module MemoForm = Memoizer.Make( module F = Formula (* let eval_form_bool = MemoForm.make_rec( fun eval (f, ((s1,s2) as sets)) -> match F.expr f with | F.True -> true,true,true | F.False -> false,false,false | F.Atom((`Left|`LLeft),b,q) -> if b == (StateSet.mem q s1) then (true,true,false) else false,false,false | F.Atom(_,b,q) -> if b == (StateSet.mem q s2) then (true,false,true) else false,false,false | F.Or(f1,f2) -> let b1,rl1,rr1 = eval (f1,sets) in if b1 && rl1 && rr1 then (true,true,true) else let b2,rl2,rr2 = eval (f2,sets) in let rl1,rr1 = if b1 then rl1,rr1 else false,false and rl2,rr2 = if b2 then rl2,rr2 else false,false in (b1 || b2, rl1||rl2,rr1||rr2) | F.And(f1,f2) -> let b1,rl1,rr1 = eval (f1,sets) in if b1 && rl1 && rr1 then (true,true,true) else if b1 then let b2,rl2,rr2 = eval (f2,sets) in if b2 then (true,rl1||rl2,rr1||rr2) else (false,false,false) else (false,false,false) ) *) *) module F = Formula let eval_form_bool = let h_f = FormTable.create BIG_H_SIZE in fun f s1 s2 -> let rec loop f = match F.expr f with | F.True -> true,true,true | F.False -> false,false,false | F.Atom((`Left|`LLeft),b,q) -> if b == (StateSet.mem q s1) then (true,true,false) else false,false,false | F.Atom(_,b,q) -> if b == (StateSet.mem q s2) then (true,false,true) else false,false,false | f' -> try FormTable.find h_f (f,s1,s2) with Not_found -> let r = match f' with | F.Or(f1,f2) -> let b1,rl1,rr1 = loop f1 in if b1 && rl1 && rr1 then (true,true,true) else let b2,rl2,rr2 = loop f2 in let rl1,rr1 = if b1 then rl1,rr1 else false,false and rl2,rr2 = if b2 then rl2,rr2 else false,false in (b1 || b2, rl1||rl2,rr1||rr2) | F.And(f1,f2) -> let b1,rl1,rr1 = loop f1 in if b1 && rl1 && rr1 then (true,true,true) else if b1 then let b2,rl2,rr2 = loop f2 in if b2 then (true,rl1||rl2,rr1||rr2) else (false,false,false) else (false,false,false) | _ -> assert false in FormTable.add h_f (f,s1,s2) r;r in loop f module FTable = Hashtbl.Make( struct type t = Formlist.t*StateSet.t*StateSet.t let equal (f1,s1,t1) (f2,s2,t2) = f1 == f2 && s1 == s2 && t1 == t2;; let hash (f,s,t) = HASHINT3(Formlist.uid f ,StateSet.uid s,StateSet.uid t);; end) (* module MemoFormlist = Memoizer.Make(FTable) Too slow let eval_formlist = MemoFormlist.make_rec ( fun eval (fl,((s1,s2)as sets)) -> match Formlist.node fl with | Formlist.Nil -> StateSet.empty,false,false,false,false | Formlist.Cons(f,fll) -> let q,mark,f,_ = Transition.node f in let b,b1,b2 = eval_form_bool f s1 s2 in let s,b',b1',b2',amark = eval (fll,sets) in if b then (StateSet.add q s, b, b1'||b1,b2'||b2,mark||amark) else s,b',b1',b2',amark ) *) let h_f = FTable.create BIG_H_SIZE let eval_formlist s1 s2 fl = let rec loop fl = try FTable.find h_f (fl,s1,s2) with | Not_found -> match Formlist.node fl with | Formlist.Cons(f,fll) -> let q,mark,f,_ = Transition.node f in let b,b1,b2 = eval_form_bool f s1 s2 in let s,b',b1',b2',amark = loop fll in let r = if b then (StateSet.add q s, b, b1'||b1,b2'||b2,mark||amark) else s,b',b1',b2',amark in FTable.add h_f (fl,s1,s2) r;r | Formlist.Nil -> StateSet.empty,false,false,false,false in loop fl let tags_of_state a q = Hashtbl.fold (fun p l acc -> if p == q then List.fold_left (fun acc (ts,t) -> let _,_,_,aux = Transition.node t in if aux then acc else TagSet.cup ts acc) acc l else acc) a.trans TagSet.empty let tags a qs = let ts = Ptset.Int.fold (fun q acc -> TagSet.cup acc (tags_of_state a q)) qs TagSet.empty in if TagSet.is_finite ts then `Positive(TagSet.positive ts) else `Negative(TagSet.negative ts) let inter_text a b = match b with | `Positive s -> let r = Ptset.Int.inter a s in (r,Ptset.Int.mem Tag.pcdata r, true) | `Negative s -> let r = Ptset.Int.diff a s in (r, Ptset.Int.mem Tag.pcdata r, false) module type ResultSet = sig type t type elt = [` Tree] Tree.node val empty : t val cons : elt -> t -> t val concat : t -> t -> t val iter : ( elt -> unit) -> t -> unit val fold : ( elt -> 'a -> 'a) -> t -> 'a -> 'a val map : ( elt -> elt) -> t -> t val length : t -> int val merge : bool -> bool -> bool -> bool -> elt -> t -> t -> t end module Integer : ResultSet = struct type t = int type elt = [`Tree] Tree.node let empty = 0 let cons _ x = x+1 let concat x y = x + y let iter _ _ = failwith "iter not implemented" let fold _ _ _ = failwith "fold not implemented" let map _ _ = failwith "map not implemented" let length x = x let merge rb rb1 rb2 mark t res1 res2 = if rb then let res1 = if rb1 then res1 else 0 and res2 = if rb2 then res2 else 0 in if mark then 1+res1+res2 else res1+res2 else 0 end module IdSet : ResultSet = struct type elt = [`Tree] Tree.node type node = Nil | Cons of elt * node | Concat of node*node and t = { node : node; length : int } let empty = { node = Nil; length = 0 } let cons e t = { node = Cons(e,t.node); length = t.length+1 } let concat t1 t2 = { node = Concat(t1.node,t2.node); length = t1.length+t2.length } let append e t = { node = Concat(t.node,Cons(e,Nil)); length = t.length+1 } let fold f l acc = let rec loop acc t = match t with | Nil -> acc | Cons (e,t) -> loop (f e acc) t | Concat (t1,t2) -> loop (loop acc t1) t2 in loop acc l.node let length l = l.length let iter f l = let rec loop = function | Nil -> () | Cons (e,t) -> f e; loop t | Concat(t1,t2) -> loop t1;loop t2 in loop l.node let map f l = let rec loop = function | Nil -> Nil | Cons(e,t) -> Cons(f e, loop t) | Concat(t1,t2) -> Concat(loop t1,loop t2) in { l with node = loop l.node } let merge rb rb1 rb2 mark t res1 res2 = if rb then let res1 = if rb1 then res1 else empty and res2 = if rb2 then res2 else empty in if mark then { node = Cons(t,(Concat(res1.node,res2.node))); length = res1.length + res2.length + 1;} else { node = (Concat(res1.node,res2.node)); length = res1.length + res2.length ;} else empty end module Run (RS : ResultSet) = struct module SList = struct include Hlist.Make (StateSet) type data = t node let make _ = failwith "make" end IFDEF DEBUG THEN module IntSet = Set.Make(struct type t = int let compare = (-) end) INCLUDE "html_trace.ml" END let mk_fun f s = D_IGNORE_(register_funname f s,f) let mk_app_fun f arg s = let g = f arg in D_IGNORE_(register_funname g ((get_funname f) ^ " " ^ s), g) let string_of_ts tags = (Ptset.Int.fold (fun t a -> a ^ " " ^ (Tag.to_string t) ) tags "{")^ " }" let choose_jump tagset qtags1 qtagsn a f_nil f_t1 f_s1 f_tn f_sn f_notext = let tags1,hastext1,fin1 = inter_text tagset (tags a qtags1) in let tagsn,hastextn,finn = inter_text tagset (tags a qtagsn) in (*if (hastext1||hastextn) then (`ANY,f_text) (* jumping to text nodes doesn't work really well *) else*) if (Ptset.Int.is_empty tags1) && (Ptset.Int.is_empty tagsn) then (`NIL,f_nil) else if (Ptset.Int.is_empty tagsn) then if (Ptset.Int.is_singleton tags1) then (* TaggedChild/Sibling *) let tag = (Ptset.Int.choose tags1) in (`TAG(tag),mk_app_fun f_t1 tag (Tag.to_string tag)) else (* SelectChild/Sibling *) (`ANY,mk_app_fun f_s1 tags1 (string_of_ts tags1)) else if (Ptset.Int.is_empty tags1) then if (Ptset.Int.is_singleton tagsn) then (* TaggedDesc/Following *) let tag = (Ptset.Int.choose tagsn) in (`TAG(tag),mk_app_fun f_tn tag (Tag.to_string tag)) else (* SelectDesc/Following *) (`ANY,mk_app_fun f_sn tagsn (string_of_ts tagsn)) else (`ANY,f_notext) let choose_jump_down tree a b c d = choose_jump a b c d (mk_fun (fun _ -> Tree.nil) "Tree.mk_nil") (mk_fun (Tree.tagged_child tree) "Tree.tagged_child") (mk_fun (Tree.select_child tree) "Tree.select_child") (* !! no select_child in Tree.ml *) (mk_fun (Tree.tagged_desc tree) "Tree.tagged_desc") (mk_fun (Tree.select_desc tree) "Tree.select_desc") (* !! no select_desc *) (mk_fun (Tree.first_child tree) "Tree.first_child") let choose_jump_next tree a b c d = choose_jump a b c d (mk_fun (fun _ _ -> Tree.nil) "Tree.mk_nil2") (mk_fun (Tree.tagged_sibling_ctx tree) "Tree.tagged_sibling_ctx")(* !! no tagged_sibling in Tree.ml *) (mk_fun (Tree.select_sibling_ctx tree) "Tree.select_sibling_ctx")(* !! no select_sibling in Tree.ml *) (mk_fun (Tree.tagged_foll_ctx tree) "Tree.tagged_foll_ctx") (mk_fun (Tree.select_foll_ctx tree) "Tree.select_foll_ctx")(* !! no select_foll *) (mk_fun (Tree.next_sibling_ctx tree) "Tree.node_sibling_ctx") module SetTagKey = struct type t = Tag.t*SList.t let equal (t1,s1) (t2,s2) = t1 == t2 && s1 == s2 let hash (t,s) = HASHINT2(t,SList.uid s) end module CachedTransTable = Hashtbl.Make(SetTagKey) let td_trans = CachedTransTable.create 4093 let empty_size n = let rec loop acc = function 0 -> acc | n -> loop (SList.cons StateSet.empty acc) (n-1) in loop SList.nil n let merge rb rb1 rb2 mark t res1 res2 = if rb then let res1 = if rb1 then res1 else RS.empty and res2 = if rb2 then res2 else RS.empty in if mark then RS.cons t (RS.concat res1 res2) else RS.concat res1 res2 else RS.empty let top_down ?(noright=false) a tree t slist ctx slot_size = let pempty = empty_size slot_size in (* evaluation starts from the right so we put sl1,res1 at the end *) let eval_fold2_slist fll t (sl2,res2) (sl1,res1) = let res = Array.copy res1 in let rec fold l1 l2 fll i aq = match SList.node l1,SList.node l2, fll with | SList.Cons(s1,ll1), SList.Cons(s2,ll2), fl::fll -> let r',rb,rb1,rb2,mark = eval_formlist s1 s2 fl in let _ = res.(i) <- RS.merge rb rb1 rb2 mark t res1.(i) res2.(i) in fold ll1 ll2 fll (i+1) (SList.cons r' aq) | SList.Nil, SList.Nil,[] -> aq,res | _ -> assert false in fold sl1 sl2 fll 0 SList.nil in let null_result() = (pempty,Array.make slot_size RS.empty) in let rec loop t slist ctx = if t == Tree.nil then null_result() else get_trans t slist (Tree.tag tree t) ctx and loop_tag tag t slist ctx = if t == Tree.nil then null_result() else get_trans t slist tag ctx and loop_no_right t slist ctx = if t == Tree.nil then null_result() else get_trans ~noright:true t slist (Tree.tag tree t) ctx and get_trans ?(noright=false) t slist tag ctx = let cont = try CachedTransTable.find td_trans (tag,slist) with | Not_found -> let fl_list,llist,rlist,ca,da,sa,fa = SList.fold (fun set (fll_acc,lllacc,rllacc,ca,da,sa,fa) -> (* For each set *) let fl,ll,rr,ca,da,sa,fa = StateSet.fold (fun q acc -> List.fold_left (fun ((fl_acc,ll_acc,rl_acc,c_acc,d_acc,s_acc,f_acc) as acc) (ts,t) -> if (TagSet.mem tag ts) then let _,_,f,_ = Transition.node t in let (child,desc,below),(sibl,foll,after) = Formula.st f in (Formlist.cons t fl_acc, StateSet.union ll_acc below, StateSet.union rl_acc after, StateSet.union child c_acc, StateSet.union desc d_acc, StateSet.union sibl s_acc, StateSet.union foll f_acc) else acc ) acc ( try Hashtbl.find a.trans q with Not_found -> Printf.eprintf "Looking for state %i, doesn't exist!!!\n%!" q;[] ) ) set (Formlist.nil,StateSet.empty,StateSet.empty,ca,da,sa,fa) in fl::fll_acc, (SList.cons ll lllacc), (SList.cons rr rllacc),ca,da,sa,fa) slist ([],SList.nil,SList.nil,StateSet.empty,StateSet.empty,StateSet.empty,StateSet.empty) in (* Logic to chose the first and next function *) let tags_below,tags_after = Tree.tags tree tag in let f_kind,first = choose_jump_down tree tags_below ca da a and n_kind,next = if noright then (`NIL, fun _ _ -> Tree.nil ) else choose_jump_next tree tags_after sa fa a in let empty_res = null_result() in let cont = match f_kind,n_kind with | `NIL,`NIL -> (fun _ _ -> eval_fold2_slist fl_list t empty_res empty_res ) | _,`NIL -> ( match f_kind with |`TAG(tag) -> (fun t _ -> eval_fold2_slist fl_list t empty_res (loop_tag tag (first t) llist t)) | `ANY -> (fun t _ -> eval_fold2_slist fl_list t empty_res (loop (first t) llist t)) | _ -> assert false) | `NIL,_ -> ( match n_kind with |`TAG(tag) -> (fun t ctx -> eval_fold2_slist fl_list t (loop_tag tag (next t ctx) rlist ctx) empty_res) | `ANY -> (fun t ctx -> eval_fold2_slist fl_list t (loop (next t ctx) rlist ctx) empty_res) | _ -> assert false) | `TAG(tag1),`TAG(tag2) -> (fun t ctx -> eval_fold2_slist fl_list t (loop (next t ctx) rlist ctx) (loop (first t) llist t)) | `TAG(tag),`ANY -> (fun t ctx -> eval_fold2_slist fl_list t (loop (next t ctx) rlist ctx) (loop_tag tag (first t) llist t)) | `ANY,`TAG(tag) -> (fun t ctx -> eval_fold2_slist fl_list t (loop_tag tag (next t ctx) rlist ctx) (loop (first t) llist t) ) | `ANY,`ANY -> (fun t ctx -> eval_fold2_slist fl_list t (loop (next t ctx) rlist ctx) (loop (first t) llist t) ) | _ -> assert false in let cont = D_IF_( (fun t ctx -> let a,b = cont t ctx in register_trace t (slist,a,fl_list,first,next,ctx); (a,b) ) ,cont) in (CachedTransTable.add td_trans (tag,slist) cont;cont) in cont t ctx in (if noright then loop_no_right else loop) t slist ctx let run_top_down a tree = let init = SList.cons a.init SList.nil in let _,res = top_down a tree Tree.root init Tree.root 1 in D_IGNORE_( output_trace a tree root "trace.html" (RS.fold (fun t a -> IntSet.add (Tree.id t) a) res.(0) IntSet.empty), res.(0)) ;; module Configuration = struct module Ptss = Set.Make(StateSet) module IMap = Map.Make(StateSet) type t = { hash : int; sets : Ptss.t; results : RS.t IMap.t } let empty = { hash = 0; sets = Ptss.empty; results = IMap.empty; } let is_empty c = Ptss.is_empty c.sets let add c s r = if Ptss.mem s c.sets then { c with results = IMap.add s (RS.concat r (IMap.find s c.results)) c.results} else { hash = HASHINT2(c.hash,Ptset.Int.uid s); sets = Ptss.add s c.sets; results = IMap.add s r c.results } let pr fmt c = Format.fprintf fmt "{"; Ptss.iter (fun s -> StateSet.print fmt s; Format.fprintf fmt " ") c.sets; Format.fprintf fmt "}\n%!"; IMap.iter (fun k d -> StateSet.print fmt k; Format.fprintf fmt "-> %i\n" (RS.length d)) c.results; Format.fprintf fmt "\n%!" let merge c1 c2 = let acc1 = IMap.fold (fun s r acc -> IMap.add s (try RS.concat r (IMap.find s acc) with | Not_found -> r) acc) c1.results IMap.empty in let imap = IMap.fold (fun s r acc -> IMap.add s (try RS.concat r (IMap.find s acc) with | Not_found -> r) acc) c2.results acc1 in let h,s = Ptss.fold (fun s (ah,ass) -> (HASHINT2(ah,Ptset.Int.uid s), Ptss.add s ass)) (Ptss.union c1.sets c2.sets) (0,Ptss.empty) in { hash = h; sets =s; results = imap } end let h_fold = Hashtbl.create 511 let fold_f_conf t slist fl_list conf dir= let rec loop sl fl acc = match SList.node sl,fl with |SList.Nil,[] -> acc |SList.Cons(s,sll), formlist::fll -> let r',rb,rb1,rb2,mark = let key = SList.hash sl,Formlist.hash formlist,dir in try Hashtbl.find h_fold key with Not_found -> let res = if dir then eval_formlist s Ptset.Int.empty formlist else eval_formlist Ptset.Int.empty s formlist in (Hashtbl.add h_fold key res;res) in if rb && ((dir&&rb1)|| ((not dir) && rb2)) then let acc = let old_r = try Configuration.IMap.find s conf.Configuration.results with Not_found -> RS.empty in Configuration.add acc r' (if mark then RS.cons t old_r else old_r) in loop sll fll acc else loop sll fll acc | _ -> assert false in loop slist fl_list Configuration.empty let h_trans = Hashtbl.create 4096 let get_up_trans slist ptag a tree = let key = (HASHINT2(SList.uid slist,ptag)) in try Hashtbl.find h_trans key with | Not_found -> let f_list = Hashtbl.fold (fun q l acc -> List.fold_left (fun fl_acc (ts,t) -> if TagSet.mem ptag ts then Formlist.cons t fl_acc else fl_acc) acc l) a.trans Formlist.nil in let res = SList.fold (fun _ acc -> f_list::acc) slist [] in (Hashtbl.add h_trans key res;res) let h_tdconf = Hashtbl.create 511 let rec bottom_up a tree t conf next jump_fun root dotd init accu = if (not dotd) && (Configuration.is_empty conf ) then accu,conf,next else let below_right = Tree.is_below_right tree t next in let accu,rightconf,next_of_next = if below_right then (* jump to the next *) bottom_up a tree next conf (jump_fun next) jump_fun (Tree.next_sibling tree t) true init accu else accu,Configuration.empty,next in let sub = if dotd then if below_right then prepare_topdown a tree t true else prepare_topdown a tree t false else conf in let conf,next = (Configuration.merge rightconf sub, next_of_next) in if t == root then accu,conf,next else let parent = Tree.binary_parent tree t in let ptag = Tree.tag tree parent in let dir = Tree.is_left tree t in let slist = Configuration.Ptss.fold (fun e a -> SList.cons e a) conf.Configuration.sets SList.nil in let fl_list = get_up_trans slist ptag a parent in let slist = SList.rev (slist) in let newconf = fold_f_conf parent slist fl_list conf dir in let accu,newconf = Configuration.IMap.fold (fun s res (ar,nc) -> if Ptset.Int.intersect s init then ( RS.concat res ar ,nc) else (ar,Configuration.add nc s res)) (newconf.Configuration.results) (accu,Configuration.empty) in bottom_up a tree parent newconf next jump_fun root false init accu and prepare_topdown a tree t noright = let tag = Tree.tag tree t in (* pr "Going top down on tree with tag %s = %s " (if Tree.is_nil t then "###" else (Tag.to_string(Tree.tag t))) (Tree.dump_node t); *) let r = try Hashtbl.find h_tdconf tag with | Not_found -> let res = Hashtbl.fold (fun q l acc -> if List.exists (fun (ts,_) -> TagSet.mem tag ts) l then Ptset.Int.add q acc else acc) a.trans Ptset.Int.empty in Hashtbl.add h_tdconf tag res;res in (* let _ = pr ", among "; StateSet.print fmt (Ptset.Int.elements r); pr "\n%!"; in *) let r = SList.cons r SList.nil in let set,res = top_down (~noright:noright) a tree t r t 1 in let set = match SList.node set with | SList.Cons(x,_) ->x | _ -> assert false in (* pr "Result of topdown run is %!"; StateSet.print fmt (Ptset.Int.elements set); pr ", number is %i\n%!" (RS.length res.(0)); *) Configuration.add Configuration.empty set res.(0) let run_bottom_up a tree k = let t = Tree.root in let trlist = Hashtbl.find a.trans (Ptset.Int.choose a.init) in let init = List.fold_left (fun acc (_,t) -> let _,_,f,_ = Transition.node t in let _,_,l = fst ( Formula.st f ) in Ptset.Int.union acc l) Ptset.Int.empty trlist in let tree1,jump_fun = match k with | `TAG (tag) -> (*Tree.tagged_lowest t tag, fun tree -> Tree.tagged_next tree tag*) (Tree.tagged_desc tree tag t, let jump = Tree.tagged_foll_ctx tree tag in fun n -> jump n t ) | `CONTAINS(_) -> (Tree.first_child tree t,let jump = Tree.next_sibling_ctx tree in fun n -> jump n t) | _ -> assert false in let tree2 = jump_fun tree1 in let rec loop t next acc = (* let _ = pr "\n_________________________\nNew iteration\n" in let _ = pr "Jumping to %s\n%!" (Tree.dump_node tree) in *) let acc,conf,next_of_next = bottom_up a tree t Configuration.empty next jump_fun (Tree.root) true init acc in (* let _ = pr "End of first iteration, conf is:\n%!"; Configuration.pr fmt conf in *) let acc = Configuration.IMap.fold ( fun s res acc -> if Ptset.Int.intersect init s then RS.concat res acc else acc) conf.Configuration.results acc in if Tree.is_nil next_of_next (*|| Tree.equal next next_of_next *)then acc else loop next_of_next (jump_fun next_of_next) acc in loop tree1 tree2 RS.empty end let top_down_count a t = let module RI = Run(Integer) in Integer.length (RI.run_top_down a t) let top_down a t = let module RI = Run(IdSet) in (RI.run_top_down a t) let bottom_up_count a t k = let module RI = Run(Integer) in Integer.length (RI.run_bottom_up a t k)