(******************************************************************************) (* SXSI : XPath evaluator *) (* Kim Nguyen (Kim.Nguyen@nicta.com.au) *) (* Copyright NICTA 2008 *) (* Distributed under the terms of the LGPL (see LICENCE) *) (******************************************************************************) INCLUDE "utils.ml" external init_lib : unit -> unit = "caml_init_lib" exception CPlusPlusError of string let () = Callback.register_exception "CPlusPlusError" (CPlusPlusError "") let () = init_lib () type tree type 'a node = private int type node_kind = [`Text | `Tree ] type t = { doc : tree; children : Ptset.Int.t array; siblings : Ptset.Int.t array; descendants: Ptset.Int.t array; followings: Ptset.Int.t array; } external inode : 'a node -> int = "%identity" external nodei : int -> 'a node = "%identity" let compare_node x y = (inode x) - (inode y) let equal_node : 'a node -> 'a node -> bool = (==) external parse_xml_uri : string -> int -> bool -> bool -> tree = "caml_call_shredder_uri" external parse_xml_string : string -> int -> bool -> bool -> tree = "caml_call_shredder_string" external tree_print_xml_fast3 : tree -> [`Tree ] node -> Unix.file_descr ->unit = "caml_xml_tree_print" external tree_save : tree -> Unix.file_descr -> string -> unit = "caml_xml_tree_save" external tree_load : Unix.file_descr -> string -> bool -> int -> tree = "caml_xml_tree_load" external nullt : unit -> 'a node = "caml_xml_tree_nullt" let nil : [`Tree ] node = nodei ~-1 let nulldoc : [`Text ] node = nodei ~-1 let root : [`Tree ] node = nodei 0 external text_get_text : tree -> [`Text] node -> string = "caml_text_collection_get_text" external text_is_empty : tree -> [`Text ] node -> bool = "caml_text_collection_empty_text" let text_is_empty t n = (equal_node nulldoc n) || text_is_empty t n external text_is_prefix : tree -> string -> bool = "caml_text_collection_is_prefix" external text_is_suffix : tree -> string -> bool = "caml_text_collection_is_suffix" external text_is_equal : tree -> string -> bool = "caml_text_collection_is_equal" external text_is_contains : tree -> string -> bool = "caml_text_collection_is_contains" external text_is_lessthan : tree -> string -> bool = "caml_text_collection_is_lessthan" external text_count : tree -> string -> int = "caml_text_collection_count" external text_count_prefix : tree -> string -> int = "caml_text_collection_count_prefix" external text_count_suffix : tree -> string -> int = "caml_text_collection_count_suffix" external text_count_equal : tree -> string -> int = "caml_text_collection_count_equal" external text_count_contains : tree -> string -> int = "caml_text_collection_count_contains" external text_count_lessthan : tree -> string -> int = "caml_text_collection_count_lessthan" external text_prefix : tree -> string -> [`Text ] node array = "caml_text_collection_prefix" external text_suffix : tree -> string -> [`Text ] node array = "caml_text_collection_suffix" external text_equals : tree -> string -> [`Text ] node array = "caml_text_collection_equals" external text_contains : tree -> string -> [`Text ] node array = "caml_text_collection_contains" external text_lessthan : tree -> string -> [`Text ] node array = "caml_text_collection_lessthan" external tree_root : tree -> [`Tree] node = "caml_xml_tree_root" "noalloc" external tree_size : tree -> int = "caml_xml_tree_size" "noalloc" external tree_num_tags : tree -> int = "caml_xml_tree_num_tags" "noalloc" external tree_subtree_size : tree -> [`Tree] node -> int = "caml_xml_tree_subtree_size" "noalloc" external tree_subtree_elements : tree -> [`Tree] node -> int = "caml_xml_tree_subtree_elements" "noalloc" external tree_subtree_tags : tree -> [`Tree] node -> Tag.t -> int = "caml_xml_tree_subtree_elements" "noalloc" let tree_is_nil x = equal_node x nil external tree_is_leaf : tree -> [`Tree ] node -> bool = "caml_xml_tree_is_leaf" "noalloc" external tree_is_ancestor : tree -> [`Tree ] node -> [`Tree ] node -> bool = "caml_xml_tree_is_ancestor" "noalloc" external tree_is_child : tree -> [`Tree ] node -> [`Tree ] node -> bool = "caml_xml_tree_is_child" "noalloc" external tree_is_first_child : tree -> [`Tree ] node -> bool = "caml_xml_tree_is_first_child" "noalloc" external tree_num_children : tree -> [`Tree ] node -> int = "caml_xml_tree_num_children" "noalloc" external tree_child_number : tree -> [`Tree ] node -> int = "caml_xml_tree_child_number" "noalloc" external tree_depth : tree -> [`Tree ] node -> int = "caml_xml_tree_depth" "noalloc" external tree_preorder : tree -> [`Tree ] node -> int = "caml_xml_tree_preorder" "noalloc" external tree_postorder : tree -> [`Tree ] node -> int = "caml_xml_tree_postorder" "noalloc" external tree_tag : tree -> [`Tree ] node -> Tag.t = "caml_xml_tree_tag" "noalloc" external tree_doc_ids : tree -> [`Tree ] node -> [`Text] node*[`Text] node = "caml_xml_tree_doc_ids" external tree_parent : tree -> [`Tree] node -> [`Tree] node = "caml_xml_tree_parent" "noalloc" external tree_child : tree -> [`Tree] node -> int -> [`Tree] node = "caml_xml_tree_child" "noalloc" external tree_first_child : tree -> [`Tree] node -> [`Tree] node = "caml_xml_tree_first_child" "noalloc" external tree_first_element : tree -> [`Tree] node -> [`Tree] node = "caml_xml_tree_first_element" "noalloc" external tree_last_child : tree -> [`Tree] node -> [`Tree] node = "caml_xml_tree_last_child" "noalloc" external tree_next_sibling : tree -> [`Tree] node -> [`Tree] node = "caml_xml_tree_next_sibling" "noalloc" external tree_next_element : tree -> [`Tree] node -> [`Tree] node = "caml_xml_tree_next_element" "noalloc" external tree_prev_sibling : tree -> [`Tree] node -> [`Tree] node = "caml_xml_tree_prev_sibling" "noalloc" external tree_tagged_child : tree -> [`Tree] node -> Tag.t -> [`Tree] node = "caml_xml_tree_tagged_child" "noalloc" type unordered_set external unordered_set_alloc : int -> unordered_set = "caml_unordered_set_alloc" external unordered_set_length : unordered_set -> int = "caml_unordered_set_length" external unordered_set_insert : unordered_set -> int -> unit = "caml_unordered_set_set" "noalloc" external tree_select_child : tree -> [`Tree ] node -> unordered_set -> [`Tree] node = "caml_xml_tree_select_child" "noalloc" external tree_tagged_following_sibling : tree -> [`Tree] node -> Tag.t -> [`Tree] node = "caml_xml_tree_tagged_following_sibling" "noalloc" external tree_select_following_sibling : tree -> [`Tree ] node -> unordered_set -> [`Tree] node = "caml_xml_tree_select_following_sibling" "noalloc" external tree_tagged_descendant : tree -> [`Tree ] node -> Tag.t -> [`Tree ] node = "caml_xml_tree_tagged_descendant" "noalloc" external tree_select_descendant : tree -> [`Tree ] node -> unordered_set -> [`Tree] node = "caml_xml_tree_select_descendant" "noalloc" external tree_tagged_following : tree -> [`Tree ] node -> Tag.t -> [`Tree ] node = "caml_xml_tree_tagged_following" "noalloc" external tree_tagged_following_below : tree -> [`Tree ] node -> Tag.t -> [`Tree ] node -> [`Tree ] node = "caml_xml_tree_tagged_following_below" "noalloc" external tree_select_following_below : tree -> [`Tree ] node -> unordered_set -> [`Tree] node -> [`Tree] node = "caml_xml_tree_select_following_below" "noalloc" external tree_tagged_following_before : tree -> [`Tree ] node -> Tag.t -> [`Tree ] node -> [`Tree ] node = "caml_xml_tree_tagged_following_before" "noalloc" external tree_select_following_below : tree -> [`Tree ] node -> unordered_set -> [`Tree] node -> [`Tree] node = "caml_xml_tree_select_following_before" "noalloc" external tree_my_text : tree -> [`Tree ] node -> [`Text] node = "caml_xml_tree_my_text" "noalloc" external tree_my_text_unsafe : tree -> [`Tree ] node -> [`Text] node = "caml_xml_tree_my_text_unsafe" "noalloc" external tree_text_xml_id : tree -> [`Text ] node -> int = "caml_xml_tree_text_xml_id" "noalloc" external tree_node_xml_id : tree -> [`Tree ] node -> int = "caml_xml_tree_node_xml_id" "noalloc" external tree_parent_node : tree -> [`Text ] node -> [`Tree ] node = "caml_xml_tree_parent_node" "noalloc" (*external tree_prev_doc : tree -> [`Text ] node -> [`Tree ] node = "caml_xml_tree_prev_doc" "noalloc" *) external tree_closing : tree -> [`Tree] node -> [`Tree] node = "caml_xml_tree_closing" "noalloc" external tree_is_open : tree -> [`Tree] node -> bool = "caml_xml_tree_is_open" "noalloc" external benchmark_jump : tree -> Tag.t -> int = "caml_benchmark_jump" "noalloc" let benchmark_jump t s = benchmark_jump t.doc s external benchmark_fcns : tree -> int = "caml_benchmark_fcns" "noalloc" external benchmark_fene : tree -> int = "caml_benchmark_fene" "noalloc" external benchmark_iter : tree -> int = "caml_benchmark_iter" "noalloc" let benchmark_fcns t = benchmark_fcns t.doc let benchmark_fene t = benchmark_fene t.doc let benchmark_iter t = benchmark_iter t.doc external benchmark_lcps : tree -> unit = "caml_benchmark_lcps" "noalloc" let benchmark_lcps t = benchmark_lcps t.doc let text_size tree = inode (snd ( tree_doc_ids tree root )) let text_get_text t (x:[`Text] node) = if x == nulldoc then "" else text_get_text t x module HPtset = Hashtbl.Make(Ptset.Int) let vector_htbl = HPtset.create MED_H_SIZE let ptset_to_vector s = try HPtset.find vector_htbl s with Not_found -> let v = unordered_set_alloc (Ptset.Int.cardinal s) in let _ = Ptset.Int.iter (fun e -> unordered_set_insert v e) s in HPtset.add vector_htbl s v; v let subtree_size t i = tree_subtree_size t.doc i let subtree_elements t i = tree_subtree_elements t.doc i let text_size t = text_size t.doc let rec fold_siblings tree f node acc = if node == nil then acc else fold_siblings tree f (tree_next_sibling tree node) (f node acc) module TS = struct type t = bool array let create n = Array.create n false let add e a = a.(e) <- true; a let merge a b = for i = 0 to Array.length a - 1 do a.(i) <- a.(i) || b.(i) done let clear a = for i = 0 to Array.length a - 1 do a.(i) <- false; done let to_ptset a = let r = ref Ptset.Int.empty in for i = 0 to Array.length a - 1 do r := Ptset.Int.add i !r; done; !r end let collect_children_siblings tree = let ntags = (tree_num_tags tree) in let () = Printf.eprintf ">>>length: %i\n%!" ntags in let table_c = Array.init (tree_num_tags tree) (fun _ -> TS.create ntags) in let table_n = Array.init (tree_num_tags tree) (fun _ -> TS.create ntags) in let acc_tag n s = TS.add (tree_tag tree n) s in let count = ref 0 in let size = tree_subtree_size tree root in let tmp = TS.create ntags in let rec loop node = if node == nil then () else let () = if !count mod 10000 == 0 then Printf.eprintf "Node %i / %i\n%!" !count size; in let () = if !count mod 1000000 == 0 then Gc.compact() in let () = count := !count + 1 in let tag = tree_tag tree node in let () = TS.clear tmp in let children = fold_siblings tree acc_tag (tree_first_child tree node) tmp in let () = TS.merge table_c.(tag) children in let () = TS.clear tmp in let siblings = fold_siblings tree acc_tag (tree_next_sibling tree node) tmp in TS.merge table_n.(tag) siblings; loop (tree_first_child tree node); loop (tree_next_sibling tree node) in loop root; ( Array.map TS.to_ptset table_c, Array.map TS.to_ptset table_n ) let collect_children_siblings tree = let table_c = Array.create (tree_num_tags tree) Ptset.Int.empty in let table_n = Array.copy table_c in let rec loop node = if node == nil then Ptset.Int.empty else let children = loop (tree_first_child tree node) in let tag = tree_tag tree node in let () = table_c.(tag) <- Ptset.Int.union table_c.(tag) children in let siblings = loop (tree_next_sibling tree node) in Ptset.Int.add tag siblings in ignore (loop root); table_c, table_n let collect_descendants tree = let table_d = Array.create (tree_num_tags tree) Ptset.Int.empty in let rec loop node = if node == nil then Ptset.Int.empty else let d1 = loop (tree_first_child tree node) in let d2 = loop (tree_next_sibling tree node) in let tag = tree_tag tree node in table_d.(tag) <- Ptset.Int.union table_d.(tag) d1; Ptset.Int.add tag (Ptset.Int.union d1 d2) in ignore (loop root); table_d let collect_followings tree = let table_f = Array.create (tree_num_tags tree) Ptset.Int.empty in let rec loop node acc = if node == nil then acc else let f1 = loop (tree_next_sibling tree node) acc in let f2 = loop (tree_first_child tree node) f1 in let tag = tree_tag tree node in table_f.(tag) <- Ptset.Int.union table_f.(tag) f1; Ptset.Int.add tag (Ptset.Int.union f1 f2) in ignore (loop root Ptset.Int.empty); table_f let collect_tags tree = let c,n = time (collect_children_siblings) tree ~msg:"Collecting child and sibling tags" in let d = time collect_descendants tree ~msg:"Collecting descendant tags" in let f = time collect_followings tree ~msg:"Collecting following tags" in c,n,d,f let contains_array = ref [| |] let contains_index = Hashtbl.create 4096 let in_array _ i = try Hashtbl.find contains_index i with Not_found -> false let init_textfun f t s = let a = match f with | `CONTAINS -> text_contains t.doc s | `STARTSWITH -> text_prefix t.doc s | `ENDSWITH -> text_suffix t.doc s | `EQUALS -> text_equals t.doc s in (*Array.fast_sort (compare) a; *) contains_array := a; Array.iter (fun x -> Hashtbl.add contains_index x true) !contains_array let count_contains t s = text_count_contains t.doc s let init_naive_contains t s = let i,j = tree_doc_ids t.doc (tree_root t.doc) in let regexp = Str.regexp_string s in let matching arg = try let _ = Str.search_forward regexp arg 0; in true with _ -> false in let rec loop n acc l = if n >= j then acc,l else let s = text_get_text t.doc n in if matching s then loop (nodei ((inode n)+1)) (n::acc) (l+1) else loop (nodei ((inode n)+1)) acc l in let acc,l = loop i [] 0 in let a = Array.create l nulldoc in let _ = List.fold_left (fun cpt e -> a.(cpt) <- e; (cpt-1)) (l-1) acc in contains_array := a let last_idx = ref 0 let array_find a i j = let l = Array.length a in let rec loop idx x y = if x > y || idx >= l then nulldoc else if a.(idx) >= x then if a.(idx) > y then nulldoc else (last_idx := idx;a.(idx)) else loop (idx+1) x y in if a.(0) > j || a.(l-1) < i then nulldoc else loop !last_idx i j let text_below tree t = let l = Array.length !contains_array in let i,j = tree_doc_ids tree.doc t in let id = if l == 0 then i else (array_find !contains_array i j) in tree_parent_node tree.doc id let text_next tree t root = let l = Array.length !contains_array in let inf = nodei((inode(snd(tree_doc_ids tree.doc t)))+1) in let _,j = tree_doc_ids tree.doc root in let id = if l == 0 then if inf > j then nulldoc else inf else array_find !contains_array inf j in tree_parent_node tree.doc id module DocIdSet = struct include Set.Make (struct type t = [`Text] node let compare = compare_node end) end let is_nil t = t == nil let is_node t = t != nil let is_root t = t == root let node_of_t t = let _ = Tag.init (Obj.magic t) in let c,n,d,f = collect_tags t in { doc= t; children = c; siblings = n; descendants = d; followings = f } let finalize _ = Printf.eprintf "Release the string list !\n%!" ;; let parse f str = node_of_t (f str !Options.sample_factor !Options.index_empty_texts !Options.disable_text_collection) let parse_xml_uri str = parse parse_xml_uri str let parse_xml_string str = parse parse_xml_string str let size t = tree_size t.doc;; external pool : tree -> Tag.pool = "%identity" let magic_string = "SXSI_INDEX" let version_string = "3" let pos fd = Unix.lseek fd 0 Unix.SEEK_CUR let pr_pos fd = Printf.eprintf "At position %i\n%!" (pos fd) let write fd s = let sl = String.length s in let ssl = Printf.sprintf "%020i" sl in ignore (Unix.write fd ssl 0 20); ignore (Unix.write fd s 0 (String.length s)) let rec really_read fd buffer start length = if length <= 0 then () else match Unix.read fd buffer start length with 0 -> raise End_of_file | r -> really_read fd buffer (start + r) (length - r);; let read fd = let buffer = String.create 20 in let _ = really_read fd buffer 0 20 in let size = int_of_string buffer in let buffer = String.create size in let _ = really_read fd buffer 0 size in buffer let save_tag_table channel t = let t = Array.map (fun s -> Array.of_list (Ptset.Int.elements s)) t in Marshal.to_channel channel t [] let save t str = let fd = Unix.openfile str [ Unix.O_WRONLY;Unix.O_TRUNC;Unix.O_CREAT] 0o644 in let out_c = Unix.out_channel_of_descr fd in let _ = set_binary_mode_out out_c true in output_string out_c magic_string; output_char out_c '\n'; output_string out_c version_string; output_char out_c '\n'; save_tag_table out_c t.children; save_tag_table out_c t.siblings; save_tag_table out_c t.descendants; save_tag_table out_c t.followings; (* we need to move the fd to the correct position *) flush out_c; ignore (Unix.lseek fd (pos_out out_c) Unix.SEEK_SET); tree_save t.doc fd str; close_out out_c ;; let load_tag_table channel = let table : int array array = Marshal.from_channel channel in Array.map (fun a -> Ptset.Int.from_list (Array.to_list a)) table let load ?(sample=64) ?(load_text=true) str = let fd = Unix.openfile str [ Unix.O_RDONLY ] 0o644 in let in_c = Unix.in_channel_of_descr fd in let _ = set_binary_mode_in in_c true in let load_table () = (let ms = input_line in_c in if ms <> magic_string then failwith "Invalid index file"); (let vs = input_line in_c in if vs <> version_string then failwith "Invalid version file"); let c = load_tag_table in_c in let s = load_tag_table in_c in let d = load_tag_table in_c in let f = load_tag_table in_c in c,s,d,f in let _ = Printf.eprintf "\nLoading tag table : " in let c,s,d,f = time (load_table) () in ignore(Unix.lseek fd (pos_in in_c) Unix.SEEK_SET); let tree = { doc = tree_load fd str load_text sample; children = c; siblings = s; descendants = d; followings = f } in close_in in_c; tree let tag_pool t = pool t.doc let compare = compare_node let equal a b = a == b let nts = function -1 -> "Nil" | i -> Printf.sprintf "Node (%i)" i let dump_node t = nts (inode t) let is_left t n = tree_is_first_child t.doc n let is_below_right t n1 n2 = tree_is_ancestor t.doc (tree_parent t.doc n1) n2 && not (tree_is_ancestor t.doc n1 n2) let is_binary_ancestor t n1 n2 = let p = tree_parent t.doc n1 in let fin = tree_closing t.doc p in n2 > n1 && n2 < fin (* (is_below_right t n1 n2) || (tree_is_ancestor t.doc n1 n2) *) let parent t n = tree_parent t.doc n let first_child t = let doc = t.doc in ();fun n -> tree_first_child doc n let first_element t = let doc = t.doc in (); fun n -> tree_first_element doc n let first_element t n = tree_first_element t.doc n (* these function will be called in two times: first partial application on the tag, then application of the tag and the tree, then application of the other arguments. We use the trick to let the compiler optimize application *) let tagged_child t tag = () ; fun n -> tree_tagged_child t.doc n tag let select_child t = fun ts -> let v = ptset_to_vector ts in (); fun n -> tree_select_child t.doc n v let next_sibling t = let doc = t.doc in (); fun n -> tree_next_sibling doc n let next_element t = let doc = t.doc in (); fun n -> tree_next_element doc n let next_element t n = tree_next_element t.doc n let tagged_following_sibling t tag = (); fun n -> tree_tagged_following_sibling t.doc n tag let select_following_sibling t = fun ts -> let v = (ptset_to_vector ts) in (); fun n -> tree_select_following_sibling t.doc n v let next_sibling_below t = (); fun n _ -> tree_next_sibling t.doc n let next_element_below t = (); fun n _ -> tree_next_element t.doc n let tagged_following_sibling_below t tag = (); fun n _ -> tree_tagged_following_sibling t.doc n tag let select_following_sibling_below t = fun ts -> let v = (ptset_to_vector ts) in (); fun n _ -> tree_select_following_sibling t.doc n v let id t n = tree_node_xml_id t.doc n let tag t n = if n == nil then Tag.nullt else tree_tag t.doc n let tagged_descendant t tag = let doc = t.doc in (); fun n -> tree_tagged_descendant doc n tag let select_descendant t = fun ts -> let v = (ptset_to_vector ts) in (); fun n -> tree_select_descendant t.doc n v let tagged_following_below t tag = let doc = t.doc in (); fun n ctx -> tree_tagged_following_below doc n tag ctx let select_following_below t = fun ts -> let v = (ptset_to_vector ts) in (); fun n ctx -> tree_select_following_below t.doc n v ctx let closing t n = tree_closing t.doc n let is_open t n = tree_is_open t.doc n let get_text_id t n = tree_my_text t.doc n let last_idx = ref 0 let array_find a i j = let l = Array.length a in let rec loop idx x y = if x > y || idx >= l then nil else if a.(idx) >= x then if a.(idx) > y then nil else (last_idx := idx;a.(idx)) else loop (idx+1) x y in if a.(0) > j || a.(l-1) < i then nil else loop !last_idx i j let count t s = text_count t.doc s let stack = ref [] let init_stack () = stack := [] let push x = stack:= x::!stack let peek () = match !stack with p::_ -> p | _ -> failwith "peek" let pop () = match !stack with p::r -> stack:=r; p | _ -> failwith "pop" let next t = nodei ( (inode t) + 1 ) let next2 t = nodei ( (inode t) + 2 ) let next3 t = nodei ( (inode t) + 3 ) let print_xml_fast2 = let _ = init_stack () in let h = Hashtbl.create MED_H_SIZE in let tag_str t = try Hashtbl.find h t with Not_found -> let s = Tag.to_string t in Hashtbl.add h t s;s in let h_att = Hashtbl.create MED_H_SIZE in let att_str t = try Hashtbl.find h_att t with Not_found -> let s = Tag.to_string t in let attname = String.sub s 3 ((String.length s) -3) in Hashtbl.add h_att t attname;attname in fun outc tree t -> let tree = tree.doc in let fin = tree_closing tree t in let rec loop_tag t tag = if t <= fin then if tree_is_open tree t then (* opening tag *) if tag == Tag.pcdata then begin output_string outc (text_get_text tree (tree_my_text_unsafe tree t)); loop (next2 t) (* skip closing $ *) end else let tagstr = tag_str tag in let _ = output_char outc '<'; output_string outc tagstr in let t' = next t in if tree_is_open tree t' then let _ = push tagstr in let tag' = tree_tag tree t' in if tag' == Tag.attribute then let t'' = loop_attr (next t') 0 in output_string outc ">"; loop t'' else (output_string outc ">";loop_tag t' tag') else (* closing with no content *) let _ = output_string outc "/>" in loop (next t') else begin (* closing tag *) output_string outc "'; loop (next t); end and loop t = loop_tag t (tree_tag tree t) and loop_attr t n = if tree_is_open tree t then let attname = att_str (tree_tag tree t) in output_char outc ' '; output_string outc attname; output_string outc "=\""; let t = next t in (* open $@ *) output_string outc (text_get_text tree (tree_my_text_unsafe tree t)); output_char outc '"'; loop_attr (next3 t) (n+1) else next t (* close @ *) in loop t let print_xml_fast = let h = Hashtbl.create MED_H_SIZE in let tag_str t = try Hashtbl.find h t with Not_found -> let s = Tag.to_string t in Hashtbl.add h t s;s in let h_att = Hashtbl.create MED_H_SIZE in let att_str t = try Hashtbl.find h_att t with Not_found -> let s = Tag.to_string t in let attname = String.sub s 3 ((String.length s) -3) in Hashtbl.add h_att t attname;attname in fun outc tree t -> let rec loop ?(print_right=true) t = if t != nil then let tagid = tree_tag tree.doc t in if tagid==Tag.pcdata then begin let tid = tree_my_text_unsafe tree.doc t in output_string outc (text_get_text tree.doc tid); if print_right then loop (next_sibling tree t); end else let tagstr = tag_str tagid in let l = first_child tree t and r = next_sibling tree t in output_char outc '<'; output_string outc tagstr; if l == nil then output_string outc "/>" else if (tag tree l) == Tag.attribute then begin loop_attributes (first_child tree l); if (next_sibling tree l) == nil then output_string outc "/>" else begin output_char outc '>'; loop (next_sibling tree l); output_string outc "'; end; end else begin output_char outc '>'; loop l; output_string outc "'; end; if print_right then loop r and loop_attributes a = if a != nil then let attname = att_str (tag tree a) in let fsa = first_child tree a in let tid = tree_my_text_unsafe tree.doc fsa in output_char outc ' '; output_string outc attname; output_string outc "=\""; output_string outc (text_get_text tree.doc tid); output_char outc '"'; loop_attributes (next_sibling tree a) in loop ~print_right:false t let print_xml_fast outc tree t = if (tag tree t) = Tag.document_node then print_xml_fast outc tree (first_child tree t) else print_xml_fast outc tree t let tags_children t tag = t.children.(tag) let tags_below t tag = t.descendants.(tag) let tags_siblings t tag = t.siblings.(tag) let tags_after t tag = t.followings.(tag) let tags t tag = t.children.(tag), t.descendants.(tag), t.siblings.(tag), t.followings.(tag) let rec binary_parent t n = let r = if tree_is_first_child t.doc n then tree_parent t.doc n else tree_prev_sibling t.doc n in if tree_tag t.doc r = Tag.pcdata then binary_parent t r else r let doc_ids t n = tree_doc_ids t.doc n let subtree_tags t tag = (); fun n -> if n == nil then 0 else tree_subtree_tags t.doc n tag let get_text t n = let tid = tree_my_text t.doc n in if tid == nulldoc then "" else text_get_text t.doc tid let dump_tree fmt tree = let rec loop t n = if t != nil then let tag = (tree_tag tree.doc t ) in let tagstr = Tag.to_string tag in let tab = String.make n ' ' in if tag == Tag.pcdata || tag == Tag.attribute_data then Format.fprintf fmt "%s<%s>%s\n" tab tagstr (text_get_text tree.doc (tree_my_text tree.doc t)) tagstr else begin Format.fprintf fmt "%s<%s>\n" tab tagstr; loop (tree_first_child tree.doc t) (n+2); Format.fprintf fmt "%s\n%!" tab tagstr; end; loop (tree_next_sibling tree.doc t) n in loop root 0 ;; let print_xml_fast3 t = tree_print_xml_fast3 t.doc let stats t = let tree = t.doc in let rec loop left node acc_d total_d num_leaves = if node == nil then (acc_d+total_d,if left then num_leaves+1 else num_leaves) else let d,td = loop true (tree_first_child tree node) (acc_d+1) total_d num_leaves in loop false (tree_next_sibling tree node) (acc_d) d td in let a,b = loop true root 0 0 0 in Printf.eprintf "Average depth: %f, number of leaves %i\n%!" ((float_of_int a)/. (float_of_int b)) b ;; let test_prefix t s = Array.length (text_prefix t.doc s) let test_suffix t s = Array.length (text_suffix t.doc s) let test_contains t s = Array.length (text_contains t.doc s) let test_equals t s = Array.length (text_equals t.doc s)