(******************************************************************************) (* SXSI : XPath evaluator *) (* Kim Nguyen (Kim.Nguyen@nicta.com.au) *) (* Copyright NICTA 2008 *) (* Distributed under the terms of the LGPL (see LICENCE) *) (******************************************************************************) INCLUDE "utils.ml" external init_lib : unit -> unit = "caml_init_lib" exception CPlusPlusError of string let () = Callback.register_exception "CPlusPlusError" (CPlusPlusError "") let () = init_lib () type tree type 'a node = private int type node_kind = [`Text | `Tree ] external inode : 'a node -> int = "%identity" external nodei : int -> 'a node = "%identity" let compare_node x y = (inode x) - (inode y) let equal_node : 'a node -> 'a node -> bool = (==) external parse_xml_uri : string -> int -> bool -> bool -> tree = "caml_call_shredder_uri" external parse_xml_string : string -> int -> bool -> bool -> tree = "caml_call_shredder_string" external tree_save : tree -> Unix.file_descr -> unit = "caml_xml_tree_save" external tree_load : Unix.file_descr -> tree = "caml_xml_tree_load" external nullt : unit -> 'a node = "caml_xml_tree_nullt" let nil : [`Tree ] node = nodei ~-1 let nulldoc : [`Text ] node = nodei ~-1 let root : [`Tree ] node = nodei 0 external text_get_tc_text : tree -> [`Text] node -> string = "caml_text_collection_get_text" external text_is_empty : tree -> [`Text ] node -> bool = "caml_text_collection_empty_text" let text_is_empty t n = (equal_node nulldoc n) || text_is_empty t n external text_is_contains : tree -> string -> bool = "caml_text_collection_is_contains" external text_count_contains : tree -> string -> int = "caml_text_collection_count_contains" external text_count : tree -> string -> int = "caml_text_collection_count" external text_contains : tree -> string -> [`Text ] node array = "caml_text_collection_contains" external text_unsorted_contains : tree -> string -> unit = "caml_text_collection_unsorted_contains" external text_get_cached_text : tree -> [`Text] node -> string = "caml_text_collection_get_cached_text" external tree_root : tree -> [`Tree] node = "caml_xml_tree_root" external tree_subtree_size : tree -> [`Tree] node -> int = "caml_xml_tree_subtree_size" let tree_is_nil x = equal_node x nil external tree_parent : tree -> [`Tree] node -> [`Tree] node = "caml_xml_tree_parent" "noalloc" external tree_parent_doc : tree -> [`Text ] node -> [`Tree ] node = "caml_xml_tree_parent_doc" "noalloc" (*external tree_prev_doc : tree -> [`Text ] node -> [`Tree ] node = "caml_xml_tree_prev_doc" "noalloc" *) external tree_first_child : tree -> [`Tree] node -> [`Tree] node = "caml_xml_tree_first_child" "noalloc" external tree_first_element : tree -> [`Tree] node -> [`Tree] node = "caml_xml_tree_first_element" "noalloc" external tree_tagged_child : tree -> [`Tree] node -> Tag.t -> [`Tree] node = "caml_xml_tree_tagged_child" "noalloc" external tree_next_sibling : tree -> [`Tree] node -> [`Tree] node = "caml_xml_tree_next_sibling" "noalloc" external tree_next_element : tree -> [`Tree] node -> [`Tree] node = "caml_xml_tree_next_element" "noalloc" external tree_tagged_sibling : tree -> [`Tree] node -> Tag.t -> [`Tree] node = "caml_xml_tree_tagged_sibling" "noalloc" external tree_prev_sibling : tree -> [`Tree] node -> [`Tree] node = "caml_xml_tree_prev_sibling" "noalloc" external tree_is_leaf : tree -> [`Tree] node -> bool = "caml_xml_tree_is_leaf" "noalloc" external tree_last_child : tree -> [`Tree] node -> [`Tree] node = "caml_xml_tree_last_child" "noalloc" external tree_is_first_child : tree -> [`Tree] node -> bool = "caml_xml_tree_is_first_child" "noalloc" external tree_tag_id : tree -> [`Tree ] node -> Tag.t = "caml_xml_tree_tag_id" "noalloc" let tree_is_last t n = equal_node nil (tree_next_sibling t n) (*external tree_prev_text : tree -> [`Tree] node -> [`Text ] node = "caml_xml_tree_prev_text" "noalloc" *) external tree_my_text : tree -> [`Tree] node -> [`Text ] node = "caml_xml_tree_my_text" "noalloc" (*external tree_next_text : tree -> [`Tree] node -> [`Text ] node = "caml_xml_tree_next_text" "noalloc" *) external tree_doc_ids : tree -> [`Tree ] node -> [`Text ] node * [`Text ] node = "caml_xml_tree_doc_ids" let text_size tree = inode (snd ( tree_doc_ids tree root )) let text_get_cached_text t (x:[`Text] node) = if x == nulldoc then "" else text_get_cached_text t x external tree_text_xml_id : tree -> [`Text ] node -> int = "caml_xml_tree_text_xml_id" "noalloc" external tree_node_xml_id : tree -> [`Tree ] node -> int = "caml_xml_tree_node_xml_id" "noalloc" external tree_is_ancestor : tree -> [`Tree ] node -> [`Tree ] node -> bool = "caml_xml_tree_is_ancestor" "noalloc" external tree_tagged_desc : tree -> [`Tree ] node -> Tag.t -> [`Tree ] node = "caml_xml_tree_tagged_desc" "noalloc" external tree_tagged_foll_below : tree -> [`Tree ] node -> Tag.t -> [`Tree ] node -> [`Tree ] node = "caml_xml_tree_tagged_foll_below" "noalloc" external tree_subtree_tags : tree -> [`Tree ] node -> Tag.t -> int = "caml_xml_tree_subtree_tags" "noalloc" type unordered_set external unordered_set_alloc : int -> unordered_set = "caml_unordered_set_alloc" external unordered_set_length : unordered_set -> int = "caml_unordered_set_length" external unordered_set_insert : unordered_set -> int -> unit = "caml_unordered_set_set" "noalloc" external tree_select_child : tree -> [`Tree ] node -> unordered_set -> [`Tree] node = "caml_xml_tree_select_child" "noalloc" external tree_select_foll_sibling : tree -> [`Tree ] node -> unordered_set -> [`Tree] node = "caml_xml_tree_select_foll_sibling" "noalloc" external tree_select_desc : tree -> [`Tree ] node -> unordered_set -> [`Tree] node = "caml_xml_tree_select_desc" "noalloc" external tree_select_foll_below : tree -> [`Tree ] node -> unordered_set -> [`Tree] node -> [`Tree] node = "caml_xml_tree_select_foll_below" "noalloc" module HPtset = Hashtbl.Make(Ptset.Int) let vector_htbl = HPtset.create MED_H_SIZE let ptset_to_vector s = try HPtset.find vector_htbl s with Not_found -> let v = unordered_set_alloc (Ptset.Int.cardinal s) in let _ = Ptset.Int.iter (fun e -> unordered_set_insert v e) s in HPtset.add vector_htbl s v; v type t = { doc : tree; ttable : (Tag.t,(Ptset.Int.t*Ptset.Int.t*Ptset.Int.t*Ptset.Int.t)) Hashtbl.t; } let subtree_size t i = tree_subtree_size t.doc i let text_size t = text_size t.doc module MemUnion = Hashtbl.Make (struct type t = Ptset.Int.t*Ptset.Int.t let equal (x,y) (z,t) = (Ptset.Int.equal x z)&&(Ptset.Int.equal y t) let equal a b = equal a b || equal b a let hash (x,y) = (* commutative hash *) let x = Ptset.Int.hash x and y = Ptset.Int.hash y in if x < y then HASHINT2(x,y) else HASHINT2(y,x) end) module MemAdd = Hashtbl.Make ( struct type t = Tag.t*Ptset.Int.t let equal (x,y) (z,t) = (x == z)&&(Ptset.Int.equal y t) let hash (x,y) = HASHINT2(x,Ptset.Int.hash y) end) let collect_tags tree = let h_union = MemUnion.create BIG_H_SIZE in let pt_cup s1 s2 = try MemUnion.find h_union (s1,s2) with | Not_found -> let s = Ptset.Int.union s1 s2 in MemUnion.add h_union (s1,s2) s;s in let h_add = MemAdd.create BIG_H_SIZE in let pt_add t s = try MemAdd.find h_add (t,s) with | Not_found -> let r = Ptset.Int.add t s in MemAdd.add h_add (t,s) r;r in let h = Hashtbl.create BIG_H_SIZE in let update t sc sb ss sa = let schild,sbelow,ssibling,safter = try Hashtbl.find h t with | Not_found -> (Ptset.Int.empty,Ptset.Int.empty,Ptset.Int.empty,Ptset.Int.empty) in Hashtbl.replace h t (pt_cup sc schild,pt_cup sbelow sb, pt_cup ssibling ss, pt_cup safter sa) in let rec loop_right id acc_after = if id == nil then Ptset.Int.empty,Ptset.Int.empty,acc_after else let sibling2,desc2,after2 = loop_right (tree_next_sibling tree id) acc_after in let child1,desc1,after1 = loop_left (tree_first_child tree id) after2 in let tag = tree_tag_id tree id in update tag child1 desc1 sibling2 after2; ( pt_add tag sibling2, pt_add tag (pt_cup desc1 desc2), pt_cup after1 (pt_cup desc1 desc2) ) and loop_left id acc_after = if id == nil then Ptset.Int.empty,Ptset.Int.empty,acc_after else let sibling2,desc2,after2 = loop_right (tree_next_sibling tree id) acc_after in let child1,desc1,after1 = loop_left (tree_first_child tree id) after2 in let tag = tree_tag_id tree id in update tag child1 desc1 sibling2 after2; (pt_add tag sibling2, pt_add tag (pt_cup desc1 desc2), acc_after ) in let _ = loop_left (tree_root tree) Ptset.Int.empty in h let contains_array = ref [| |] let contains_index = Hashtbl.create 4096 let in_array _ i = try Hashtbl.find contains_index i with Not_found -> false let init_contains t s = let a = text_contains t.doc s in Array.fast_sort (compare) a; contains_array := a; Array.iter (fun x -> Hashtbl.add contains_index x true) !contains_array let count_contains t s = text_count_contains t.doc s let unsorted_contains t s = text_unsorted_contains t.doc s let init_naive_contains t s = let i,j = tree_doc_ids t.doc (tree_root t.doc) in let regexp = Str.regexp_string s in let matching arg = try let _ = Str.search_forward regexp arg 0; in true with _ -> false in let rec loop n acc l = if n >= j then acc,l else let s = text_get_cached_text t.doc n in if matching s then loop (nodei ((inode n)+1)) (n::acc) (l+1) else loop (nodei ((inode n)+1)) acc l in let acc,l = loop i [] 0 in let a = Array.create l nulldoc in let _ = List.fold_left (fun cpt e -> a.(cpt) <- e; (cpt-1)) (l-1) acc in contains_array := a let last_idx = ref 0 let array_find a i j = let l = Array.length a in let rec loop idx x y = if x > y || idx >= l then nulldoc else if a.(idx) >= x then if a.(idx) > y then nulldoc else (last_idx := idx;a.(idx)) else loop (idx+1) x y in if a.(0) > j || a.(l-1) < i then nulldoc else loop !last_idx i j let text_below tree t = let l = Array.length !contains_array in let i,j = tree_doc_ids tree.doc t in let id = if l == 0 then i else (array_find !contains_array i j) in tree_parent_doc tree.doc id let text_next tree t root = let l = Array.length !contains_array in let inf = nodei((inode(snd(tree_doc_ids tree.doc t)))+1) in let _,j = tree_doc_ids tree.doc root in let id = if l == 0 then if inf > j then nulldoc else inf else array_find !contains_array inf j in tree_parent_doc tree.doc id module DocIdSet = struct include Set.Make (struct type t = [`Text] node let compare = compare_node end) end let is_nil t = t == nil let is_node t = t != nil let is_root t = t == root let node_of_t t = let _ = Tag.init (Obj.magic t) in let table = collect_tags t in (* let _ = Hashtbl.iter (fun t (c,d,ns,f) -> Printf.eprintf "Tag %s has:\n" (Tag.to_string t); Printf.eprintf "Child tags: "; Ptset.Int.iter (fun t -> Printf.eprintf "%s "(Tag.to_string t)) c; Printf.eprintf "\nDescendant tags: "; Ptset.Int.iter (fun t -> Printf.eprintf "%s "(Tag.to_string t)) d; Printf.eprintf "\nNextSibling tags: "; Ptset.Int.iter (fun t -> Printf.eprintf "%s "(Tag.to_string t)) ns; Printf.eprintf "\nFollowing tags: "; Ptset.Int.iter (fun t -> Printf.eprintf "%s "(Tag.to_string t)) f; Printf.eprintf "\n\n%!";) table in *) { doc= t; ttable = table; } let finalize _ = Printf.eprintf "Release the string list !\n%!" ;; let parse f str = node_of_t (f str !Options.sample_factor !Options.index_empty_texts !Options.disable_text_collection) let parse_xml_uri str = parse parse_xml_uri str let parse_xml_string str = parse parse_xml_string str external pool : tree -> Tag.pool = "%identity" let magic_string = "SXSI_INDEX" let version_string = "2" let pos fd = Unix.lseek fd 0 Unix.SEEK_CUR let pr_pos fd = Printf.eprintf "At position %i\n%!" (pos fd) let write fd s = let sl = String.length s in let ssl = Printf.sprintf "%020i" sl in ignore (Unix.write fd ssl 0 20); ignore (Unix.write fd s 0 (String.length s)) let rec really_read fd buffer start length = if length <= 0 then () else match Unix.read fd buffer start length with 0 -> raise End_of_file | r -> really_read fd buffer (start + r) (length - r);; let read fd = let buffer = String.create 20 in let _ = really_read fd buffer 0 20 in let size = int_of_string buffer in let buffer = String.create size in let _ = really_read fd buffer 0 size in buffer let save t str = let fd = Unix.openfile str [ Unix.O_WRONLY;Unix.O_TRUNC;Unix.O_CREAT] 0o644 in let out_c = Unix.out_channel_of_descr fd in let _ = set_binary_mode_out out_c true in output_string out_c magic_string; output_char out_c '\n'; output_string out_c version_string; output_char out_c '\n'; Marshal.to_channel out_c t.ttable [ ]; (* we need to move the fd to the correct position *) flush out_c; ignore (Unix.lseek fd (pos_out out_c) Unix.SEEK_SET); tree_save t.doc fd; close_out out_c ;; let load ?(sample=64) str = let fd = Unix.openfile str [ Unix.O_RDONLY ] 0o644 in let in_c = Unix.in_channel_of_descr fd in let _ = set_binary_mode_in in_c true in let load_table () = (let ms = input_line in_c in if ms <> magic_string then failwith "Invalid index file"); (let vs = input_line in_c in if vs <> version_string then failwith "Invalid version file"); let table : (Tag.t,(Ptset.Int.t*Ptset.Int.t*Ptset.Int.t*Ptset.Int.t)) Hashtbl.t = Marshal.from_channel in_c in let ntable = Hashtbl.create (Hashtbl.length table) in Hashtbl.iter (fun k (s1,s2,s3,s4) -> let ss1 = Ptset.Int.fold (Ptset.Int.add) s1 Ptset.Int.empty and ss2 = Ptset.Int.fold (Ptset.Int.add) s2 Ptset.Int.empty and ss3 = Ptset.Int.fold (Ptset.Int.add) s3 Ptset.Int.empty and ss4 = Ptset.Int.fold (Ptset.Int.add) s4 Ptset.Int.empty in Hashtbl.add ntable k (ss1,ss2,ss3,ss4) ) table; Hashtbl.clear table; (* The in_channel read a chunk of fd, so we might be after the start of the XMLTree save file. Reset to the correct position *) ntable in let _ = Printf.eprintf "\nLoading tag table : " in let ntable = time (load_table) () in ignore(Unix.lseek fd (pos_in in_c) Unix.SEEK_SET); let tree = { doc = tree_load fd; ttable = ntable;} in close_in in_c; tree let tag_pool t = pool t.doc let compare = compare_node let equal a b = a == b let nts = function -1 -> "Nil" | i -> Printf.sprintf "Node (%i)" i let dump_node t = nts (inode t) let is_left t n = tree_is_first_child t.doc n let is_below_right t n1 n2 = tree_is_ancestor t.doc (tree_parent t.doc n1) n2 && not (tree_is_ancestor t.doc n1 n2) let parent t n = tree_parent t.doc n let first_child t = (); fun n -> tree_first_child t.doc n let first_element t = (); fun n -> tree_first_element t.doc n (* these function will be called in two times: first partial application on the tag, then application of the tag and the tree, then application of the other arguments. We use the trick to let the compiler optimize application *) let tagged_child t tag = () ; fun n -> tree_tagged_child t.doc n tag let select_child t = fun ts -> let v = ptset_to_vector ts in (); fun n -> tree_select_child t.doc n v let next_sibling t = (); fun n -> tree_next_sibling t.doc n let next_element t = (); fun n -> tree_next_element t.doc n let tagged_sibling t tag = (); fun n -> tree_tagged_sibling t.doc n tag let select_sibling t = fun ts -> let v = (ptset_to_vector ts) in (); fun n -> tree_select_foll_sibling t.doc n v let next_sibling_ctx t = (); fun n _ -> tree_next_sibling t.doc n let next_element_ctx t = (); fun n _ -> tree_next_element t.doc n let tagged_sibling_ctx t tag = (); fun n _ -> tree_tagged_sibling t.doc n tag let select_sibling_ctx t = fun ts -> let v = (ptset_to_vector ts) in (); fun n _ -> tree_select_foll_sibling t.doc n v let id t n = tree_node_xml_id t.doc n let tag t n = if n == nil then Tag.nullt else tree_tag_id t.doc n let tagged_desc t tag = (); fun n -> tree_tagged_desc t.doc n tag let select_desc t = fun ts -> let v = (ptset_to_vector ts) in (); fun n -> tree_select_desc t.doc n v let tagged_foll_ctx t tag = (); fun n ctx -> tree_tagged_foll_below t.doc n tag ctx let select_foll_ctx t = fun ts -> let v = (ptset_to_vector ts) in (); fun n ctx -> tree_select_foll_below t.doc n v ctx let last_idx = ref 0 let array_find a i j = let l = Array.length a in let rec loop idx x y = if x > y || idx >= l then nil else if a.(idx) >= x then if a.(idx) > y then nil else (last_idx := idx;a.(idx)) else loop (idx+1) x y in if a.(0) > j || a.(l-1) < i then nil else loop !last_idx i j let count t s = text_count t.doc s let print_xml_fast outc tree t = let rec loop ?(print_right=true) t = if t != nil then let tagid = tree_tag_id tree.doc t in if tagid==Tag.pcdata then begin let tid = tree_my_text tree.doc t in output_string outc (text_get_cached_text tree.doc tid); if print_right then loop (next_sibling tree t); end else let tagstr = Tag.to_string tagid in let l = first_child tree t and r = next_sibling tree t in output_char outc '<'; output_string outc tagstr; if l == nil then output_string outc "/>" else if (tag tree l) == Tag.attribute then begin loop_attributes (first_child tree l); if (next_sibling tree l) == nil then output_string outc "/>" else begin output_char outc '>'; loop (next_sibling tree l); output_string outc "'; end; end else begin output_char outc '>'; loop l; output_string outc "'; end; if print_right then loop r and loop_attributes a = if a != nil then let s = (Tag.to_string (tag tree a)) in let attname = String.sub s 3 ((String.length s) -3) in let fsa = first_child tree a in let tid = tree_my_text tree.doc fsa in output_char outc ' '; output_string outc attname; output_string outc "=\""; output_string outc (text_get_cached_text tree.doc tid); output_char outc '"'; loop_attributes (next_sibling tree a) in loop ~print_right:false t let print_xml_fast outc tree t = if (tag tree t) = Tag.document_node then print_xml_fast outc tree (first_child tree t) else print_xml_fast outc tree t let tags_children t tag = let a,_,_,_ = Hashtbl.find t.ttable tag in a let tags_below t tag = let _,a,_,_ = Hashtbl.find t.ttable tag in a let tags_siblings t tag = let _,_,a,_ = Hashtbl.find t.ttable tag in a let tags_after t tag = let _,_,_,a = Hashtbl.find t.ttable tag in a let tags t tag = Hashtbl.find t.ttable tag let rec binary_parent t n = let r = if tree_is_first_child t.doc n then tree_parent t.doc n else tree_prev_sibling t.doc n in if tree_tag_id t.doc r = Tag.pcdata then binary_parent t r else r let doc_ids t n = tree_doc_ids t.doc n let subtree_tags t tag = (); fun n -> if n == nil then 0 else tree_subtree_tags t.doc n tag let get_text t n = let tid = tree_my_text t.doc n in if tid == nulldoc then "" else text_get_cached_text t.doc tid let dump_tree fmt tree = let rec loop t n = if t != nil then let tag = (tree_tag_id tree.doc t ) in let tagstr = Tag.to_string tag in let tab = String.make n ' ' in if tag == Tag.pcdata || tag == Tag.attribute_data then Format.fprintf fmt "%s<%s>%s\n" tab tagstr (text_get_cached_text tree.doc (tree_my_text tree.doc t)) tagstr else begin Format.fprintf fmt "%s<%s>\n" tab tagstr; loop (tree_first_child tree.doc t) (n+2); Format.fprintf fmt "%s\n%!" tab tagstr; end; loop (tree_next_sibling tree.doc t) n in loop root 0 ;;