(******************************************************************************) (* SXSI : XPath evaluator *) (* Kim Nguyen (Kim.Nguyen@nicta.com.au) *) (* Copyright NICTA 2008 *) (* Distributed under the terms of the LGPL (see LICENCE) *) (******************************************************************************) INCLUDE "utils.ml" type tree type 'a node = int type node_kind = [`Text | `Tree ] let compare_node : 'a node -> 'a node -> int = (-) let equal_node : 'a node -> 'a node -> bool = (==) (* abstract type, values are pointers to a XMLTree C++ object *) external int_of_node : 'a node -> int = "%identity" external parse_xml_uri : string -> int -> bool -> bool -> tree = "caml_call_shredder_uri" external parse_xml_string : string -> int -> bool -> bool -> tree = "caml_call_shredder_string" external save_tree : tree -> string -> unit = "caml_xml_tree_save" external load_tree : string -> int -> tree = "caml_xml_tree_load" external nullt : unit -> 'a node = "caml_xml_tree_nullt" let nil : 'a node = -1 let root : [`Tree ] node = 0 external text_get_tc_text : tree -> [`Text] node -> string = "caml_text_collection_get_text" external text_is_empty : tree -> [`Text ] node -> bool = "caml_text_collection_empty_text" let text_is_empty t n = (equal_node nil n) || text_is_empty t n external text_is_contains : tree -> string -> bool = "caml_text_collection_is_contains" external text_count_contains : tree -> string -> int = "caml_text_collection_count_contains" external text_count : tree -> string -> int = "caml_text_collection_count" external text_contains : tree -> string -> [`Text ] node array = "caml_text_collection_contains" external text_unsorted_contains : tree -> string -> unit = "caml_text_collection_unsorted_contains" external text_get_cached_text : tree -> [`Text] node -> string = "caml_text_collection_get_cached_text" external tree_serialize : tree -> string -> unit = "caml_xml_tree_serialize" external tree_unserialize : string -> tree = "caml_xml_tree_unserialize" external tree_root : tree -> [`Tree] node = "caml_xml_tree_root" let tree_is_nil x = equal_node x nil external tree_parent : tree -> [`Tree] node -> [`Tree] node = "caml_xml_tree_parent" external tree_parent_doc : tree -> [`Text ] node -> [`Tree ] node = "caml_xml_tree_parent_doc" external tree_prev_doc : tree -> [`Text ] node -> [`Tree ] node = "caml_xml_tree_prev_doc" external tree_first_child : tree -> [`Tree] node -> [`Tree] node = "caml_xml_tree_first_child" external tree_tagged_child : tree -> [`Tree] node -> Tag.t -> [`Tree] node = "caml_xml_tree_tagged_child" external tree_next_sibling : tree -> [`Tree] node -> [`Tree] node = "caml_xml_tree_next_sibling" external tree_tagged_sibling : tree -> [`Tree] node -> Tag.t -> [`Tree] node = "caml_xml_tree_tagged_sibling" external tree_prev_sibling : tree -> [`Tree] node -> [`Tree] node = "caml_xml_tree_prev_sibling" external tree_is_leaf : tree -> [`Tree] node -> bool = "caml_xml_tree_is_leaf" external tree_last_child : tree -> [`Tree] node -> [`Tree] node = "caml_xml_tree_last_child" external tree_is_first_child : tree -> [`Tree] node -> bool = "caml_xml_tree_is_first_child" (* external tag : tree -> [`Tree ] node -> T = "caml_xml_tree_tag"*) external tree_tag_id : tree -> [`Tree ] node -> Tag.t = "caml_xml_tree_tag_id" let tree_is_last t n = equal_node nil (tree_next_sibling t n) external tree_prev_text : tree -> [`Tree] node -> [`Text ] node = "caml_xml_tree_prev_text" external tree_my_text : tree -> [`Tree] node -> [`Text ] node = "caml_xml_tree_my_text" external tree_next_text : tree -> [`Tree] node -> [`Text ] node = "caml_xml_tree_next_text" external tree_doc_ids : tree -> [`Tree ] node -> [`Text ] node * [`Text ] node = "caml_xml_tree_doc_ids" let text_size tree = int_of_node (snd ( tree_doc_ids tree (Obj.magic 0) )) let text_get_cached_text t x = if x == -1 then "" else text_get_cached_text t x external tree_text_xml_id : tree -> [`Text ] node -> int = "caml_xml_tree_text_xml_id" external tree_node_xml_id : tree -> [`Tree ] node -> int = "caml_xml_tree_node_xml_id" external tree_is_ancestor : tree -> [`Tree ] node -> [`Tree ] node -> bool = "caml_xml_tree_is_ancestor" external tree_tagged_desc : tree -> [`Tree ] node -> Tag.t -> [`Tree ] node = "caml_xml_tree_tagged_desc" external tree_tagged_foll_below : tree -> [`Tree ] node -> Tag.t -> [`Tree ] node -> [`Tree ] node = "caml_xml_tree_tagged_foll_below" external tree_subtree_tags : tree -> [`Tree ] node -> Tag.t -> int = "caml_xml_tree_subtree_tags" type int_vector external int_vector_alloc : int -> int_vector = "caml_int_vector_alloc" external int_vector_length : int_vector -> int = "caml_int_vector_length" external int_vector_set : int_vector -> int -> int -> unit = "caml_int_vector_set" external tree_select_child : tree -> [`Tree ] node -> int_vector -> [`Tree] node = "caml_xml_tree_select_child" external tree_select_foll_sibling : tree -> [`Tree ] node -> int_vector -> [`Tree] node = "caml_xml_tree_select_foll_sibling" external tree_select_desc : tree -> [`Tree ] node -> int_vector -> [`Tree] node = "caml_xml_tree_select_desc" external tree_select_foll_below : tree -> [`Tree ] node -> int_vector -> [`Tree] node -> [`Tree] node = "caml_xml_tree_select_foll_below" module HPtset = Hashtbl.Make(Ptset.Int) let vector_htbl = HPtset.create MED_H_SIZE let ptset_to_vector s = try HPtset.find vector_htbl s with Not_found -> let v = int_vector_alloc (Ptset.Int.cardinal s) in let _ = Ptset.Int.fold (fun e i -> int_vector_set v i e;i+1) s 0 in HPtset.add vector_htbl s v; v type t = { doc : tree; ttable : (Tag.t,(Ptset.Int.t*Ptset.Int.t)) Hashtbl.t; } let text_size t = text_size t.doc module MemUnion = Hashtbl.Make (struct type t = Ptset.Int.t*Ptset.Int.t let equal (x,y) (z,t) = (Ptset.Int.equal x z)&&(Ptset.Int.equal y t) let equal a b = equal a b || equal b a let hash (x,y) = (* commutative hash *) let x = Ptset.Int.hash x and y = Ptset.Int.hash y in if x < y then HASHINT2(x,y) else HASHINT2(y,x) end) let collect_tags tree = let h_union = MemUnion.create BIG_H_SIZE in let pt_cup s1 s2 = try MemUnion.find h_union (s1,s2) with | Not_found -> let s = Ptset.Int.union s1 s2 in MemUnion.add h_union (s1,s2) s;s in let h_add = Hashtbl.create BIG_H_SIZE in let pt_add t s = let k = HASHINT2(Tag.hash t,Ptset.Int.hash s) in try Hashtbl.find h_add k with | Not_found -> let r = Ptset.Int.add t s in Hashtbl.add h_add k r;r in let h = Hashtbl.create BIG_H_SIZE in let update t sb sa = let sbelow,safter = try Hashtbl.find h t with | Not_found -> (Ptset.Int.empty,Ptset.Int.empty) in Hashtbl.replace h t (pt_cup sbelow sb, pt_cup safter sa) in let rec loop id acc = if equal_node id nil then (Ptset.Int.empty,acc) else let below2,after2 = loop (tree_next_sibling tree id) acc in let below1,after1 = loop (tree_first_child tree id) after2 in let tag = tree_tag_id tree id in update tag below1 after2; pt_add tag (pt_cup below1 below2), (pt_add tag after1) in let _ = loop (tree_root tree) Ptset.Int.empty in h let contains_array = ref [| |] let contains_index = Hashtbl.create 4096 let in_array _ i = try Hashtbl.find contains_index i with Not_found -> false let init_contains t s = let a = text_contains t.doc s in Array.fast_sort (compare) a; contains_array := a; Array.iter (fun x -> Hashtbl.add contains_index x true) !contains_array let count_contains t s = text_count_contains t.doc s let unsorted_contains t s = text_unsorted_contains t.doc s let init_naive_contains t s = let i,j = tree_doc_ids t.doc (tree_root t.doc) in let regexp = Str.regexp_string s in let matching arg = try let _ = Str.search_forward regexp arg 0; in true with _ -> false in let rec loop n acc l = if n >= j then acc,l else let s = text_get_cached_text t.doc n in if matching s then loop (n+1) (n::acc) (l+1) else loop (n+1) acc l in let acc,l = loop i [] 0 in let a = Array.create l nil in let _ = List.fold_left (fun cpt e -> a.(cpt) <- e; (cpt-1)) (l-1) acc in contains_array := a module DocIdSet = struct include Set.Make (struct type t = [`Text] node let compare = compare_node end) end let is_nil t = t == nil let is_node t = t != nil let is_root t = t == root let node_of_t t = let _ = Tag.init (Obj.magic t) in let table = collect_tags t in { doc= t; ttable = table; } let finalize _ = Printf.eprintf "Release the string list !\n%!" ;; let parse f str = node_of_t (f str !Options.sample_factor !Options.index_empty_texts !Options.disable_text_collection) let parse_xml_uri str = parse parse_xml_uri str let parse_xml_string str = parse parse_xml_string str external pool : tree -> Tag.pool = "%identity" let save t str = (save_tree t.doc str) ;; let load ?(sample=64) str = node_of_t (load_tree str sample) let tag_pool t = pool t.doc let compare a b = a - b let equal a b = a == b let nts = function -1 -> "Nil" | i -> Printf.sprintf "Node (%i)" i let dump_node t = nts t let is_left t n = tree_is_first_child t.doc n let is_below_right t n1 n2 = tree_is_ancestor t.doc (tree_parent t.doc n1) n2 let parent t n = tree_parent t.doc n let first_child t = (); fun n -> tree_first_child t.doc n (* these function will be called in two times: first partial application on the tag, then application of the tag and the tree, then application of the other arguments. We use the trick to let the compiler optimize application *) let tagged_child t tag = () ; fun n -> tree_tagged_child t.doc n tag let select_child t = fun ts -> let v = ptset_to_vector ts in (); fun n -> tree_select_child t.doc n v let next_sibling t = (); fun n -> tree_next_sibling t.doc n let tagged_sibling t tag = (); fun n -> tree_tagged_sibling t.doc n tag let select_sibling t = fun ts -> let v = (ptset_to_vector ts) in (); fun n -> tree_select_foll_sibling t.doc n v let next_sibling_ctx t = (); fun n _ -> tree_next_sibling t.doc n let tagged_sibling_ctx t tag = (); fun n _ -> tree_tagged_sibling t.doc n tag let select_sibling_ctx t = fun ts -> let v = (ptset_to_vector ts) in (); fun n _ -> tree_select_foll_sibling t.doc n v let id t n = tree_node_xml_id t.doc n let tag t n = if n == nil then Tag.nullt else tree_tag_id t.doc n let tagged_desc t tag = (); fun n -> tree_tagged_desc t.doc n tag let select_desc t = fun ts -> let v = (ptset_to_vector ts) in (); fun n -> tree_select_desc t.doc n v let tagged_foll_ctx t tag = (); fun n ctx -> tree_tagged_foll_below t.doc n tag ctx let select_foll_ctx t = fun ts -> let v = (ptset_to_vector ts) in (); fun n ctx -> tree_select_foll_below t.doc n v ctx let last_idx = ref 0 let array_find a i j = let l = Array.length a in let rec loop idx x y = if x > y || idx >= l then nil else if a.(idx) >= x then if a.(idx) > y then nil else (last_idx := idx;a.(idx)) else loop (idx+1) x y in if a.(0) > j || a.(l-1) < i then nil else loop !last_idx i j let count t s = text_count t.doc s let print_xml_fast outc tree t = let rec loop ?(print_right=true) t = if t != nil then let tagid = tree_tag_id tree.doc t in if tagid==Tag.pcdata then output_string outc (text_get_cached_text tree.doc t); if print_right then loop (next_sibling tree t) else let tagstr = Tag.to_string tagid in let l = first_child tree t and r = next_sibling tree t in output_char outc '<'; output_string outc tagstr; if l == nil then output_string outc "/>" else if (tag tree l) == Tag.attribute then begin loop_attributes (first_child tree l); if (next_sibling tree l) == nil then output_string outc "/>" else begin output_char outc '>'; loop (next_sibling tree l); output_string outc "'; end; end else begin output_char outc '>'; loop l; output_string outc "'; end; if print_right then loop r and loop_attributes a = let s = (Tag.to_string (tag tree a)) in let attname = String.sub s 3 ((String.length s) -3) in output_char outc ' '; output_string outc attname; output_string outc "=\""; output_string outc (text_get_cached_text tree.doc (tree_my_text tree.doc (first_child tree a))); output_char outc '"'; loop_attributes (next_sibling tree a) in loop ~print_right:false t let print_xml_fast outc tree t = if (tag tree t) = Tag.document_node then print_xml_fast outc tree (first_child tree t) else print_xml_fast outc tree t let tags_below t tag = fst(Hashtbl.find t.ttable tag) let tags_after t tag = snd(Hashtbl.find t.ttable tag) let tags t tag = Hashtbl.find t.ttable tag let binary_parent t n = if tree_is_first_child t.doc n then tree_parent t.doc n else tree_prev_sibling t.doc n let doc_ids t n = tree_doc_ids t.doc n let subtree_tags t tag = (); fun n -> if n == nil then 0 else tree_subtree_tags t.doc n tag let get_text t n = let tid = tree_my_text t.doc n in if tid == nil then "" else text_get_cached_text t.doc tid let dump_tree fmt tree = let rec loop t n = if t != nil then let tag = (tree_tag_id tree.doc t ) in let tagstr = Tag.to_string tag in let tab = String.make n ' ' in if tag == Tag.pcdata || tag == Tag.attribute_data then Format.fprintf fmt "%s<%s>%s\n" tab tagstr (text_get_cached_text tree.doc (tree_my_text tree.doc t)) tagstr else begin Format.fprintf fmt "%s<%s>\n" tab tagstr; loop (tree_first_child tree.doc t) (n+2); Format.fprintf fmt "%s\n%!" tab tagstr; end; loop (tree_next_sibling tree.doc t) n in loop root 0 ;;