(******************************************************************************) (* SXSI : XPath evaluator *) (* Kim Nguyen (Kim.Nguyen@nicta.com.au) *) (* Copyright NICTA 2008 *) (* Distributed under the terms of the LGPL (see LICENCE) *) (******************************************************************************) (*INCLUDE "debug.ml" *) type tree type 'a node = int type node_kind = [`Text | `Tree ] let compare_node : 'a node -> 'a node -> int = (-) let equal_node : 'a node -> 'a node -> bool = (==) (* abstract type, values are pointers to a XMLTree C++ object *) external int_of_node : 'a node -> int = "%identity" external parse_xml_uri : string -> int -> bool -> bool -> tree = "caml_call_shredder_uri" external parse_xml_string : string -> int -> bool -> bool -> tree = "caml_call_shredder_string" external save_tree : tree -> string -> unit = "caml_xml_tree_save" external load_tree : string -> int -> tree = "caml_xml_tree_load" external nullt : unit -> 'a node = "caml_xml_tree_nullt" let nil : 'a node = Obj.magic (-1) external text_get_text : tree -> [`Text] node -> string = "caml_text_collection_get_text" external text_is_empty : tree -> [`Text ] node -> bool = "caml_text_collection_empty_text" let text_is_empty t n = (equal_node nil n) || text_is_empty t n external get_cached_text : tree -> [`Text ] node -> string = "caml_text_collection_get_cached_text" let text_get_text t n = if equal_node nil n then "" else get_cached_text t n external text_size : tree -> int = "caml_text_collection_size" external text_is_contains : tree -> string -> bool = "caml_text_collection_is_contains" external text_count_contains : tree -> string -> int = "caml_text_collection_count_contains" external text_count : tree -> string -> int = "caml_text_collection_count" external text_contains : tree -> string -> [`Text ] node array = "caml_text_collection_contains" external tree_serialize : tree -> string -> unit = "caml_xml_tree_serialize" external tree_unserialize : string -> tree = "caml_xml_tree_unserialize" external tree_root : tree -> [`Tree] node = "caml_xml_tree_root" let tree_is_nil x = equal_node x nil external tree_parent : tree -> [`Tree] node -> [`Tree] node = "caml_xml_tree_parent" external tree_parent_doc : tree -> [`Text ] node -> [`Tree ] node = "caml_xml_tree_parent_doc" external tree_prev_doc : tree -> [`Text ] node -> [`Tree ] node = "caml_xml_tree_prev_doc" external tree_first_child : tree -> [`Tree] node -> [`Tree] node = "caml_xml_tree_first_child" external tree_next_sibling : tree -> [`Tree] node -> [`Tree] node = "caml_xml_tree_next_sibling" external tree_prev_sibling : tree -> [`Tree] node -> [`Tree] node = "caml_xml_tree_prev_sibling" external tree_is_leaf : tree -> [`Tree] node -> bool = "caml_xml_tree_is_leaf" (* external tag : tree -> [`Tree ] node -> T = "caml_xml_tree_tag"*) external tree_tag_id : tree -> [`Tree ] node -> Tag.t = "caml_xml_tree_tag_id" let tree_is_last t n = equal_node nil (tree_next_sibling t n) external tree_prev_text : tree -> [`Tree] node -> [`Text ] node = "caml_xml_tree_prev_text" external tree_my_text : tree -> [`Tree] node -> [`Text ] node = "caml_xml_tree_my_text" external tree_next_text : tree -> [`Tree] node -> [`Text ] node = "caml_xml_tree_next_text" external tree_doc_ids : tree -> [`Tree ] node -> [`Text ] node * [`Text ] node = "caml_xml_tree_doc_ids" external tree_text_xml_id : tree -> [`Text ] node -> int = "caml_xml_tree_text_xml_id" external tree_node_xml_id : tree -> [`Tree ] node -> int = "caml_xml_tree_node_xml_id" external tree_is_ancestor : tree -> [`Tree ] node -> [`Tree ] node -> bool = "caml_xml_tree_is_ancestor" external tree_tagged_desc : tree -> [`Tree ] node -> Tag.t -> [`Tree ] node = "caml_xml_tree_tagged_desc" external tree_tagged_foll_below : tree -> [`Tree ] node -> Tag.t -> [`Tree ] node -> [`Tree ] node = "caml_xml_tree_tagged_foll_below" external tree_subtree_tags : tree -> [`Tree ] node -> Tag.t -> int = "caml_xml_tree_subtree_tags" external tree_select_below : tree -> [`Tree ] node -> Ptset.int_vector -> Ptset.int_vector -> [`Tree ] node = "caml_xml_tree_select_below" external tree_select_desc_only : tree -> [`Tree ] node -> Ptset.int_vector -> [`Tree ] node = "caml_xml_tree_select_desc_only" external tree_select_next : tree -> [`Tree ] node -> Ptset.int_vector -> Ptset.int_vector -> [`Tree ] node -> [`Tree ] node = "caml_xml_tree_select_next" external tree_select_foll_only : tree -> [`Tree ] node -> Ptset.int_vector -> [`Tree ] node -> [`Tree ] node = "caml_xml_tree_select_foll_only" external tree_select_desc_or_foll_only : tree -> [`Tree ] node -> Ptset.int_vector -> [`Tree ] node -> [`Tree ] node = "caml_xml_tree_select_foll_only" type descr = | Nil | Node of [`Tree] node | Text of [`Text] node * [`Tree] node type t = { doc : tree; node : descr; ttable : (Tag.t,(Ptset.t*Ptset.t)) Hashtbl.t; } let update h t sb sa = let sbelow,safter = try Hashtbl.find h t with | Not_found -> Ptset.empty,Ptset.empty in Hashtbl.replace h t (Ptset.union sbelow sb, Ptset.union safter sa) let collect_tags tree = let h = Hashtbl.create 511 in let rec loop id acc = if equal_node id nil then (Ptset.singleton Tag.pcdata, Ptset.add Tag.pcdata acc) else let below2,after2 = loop (tree_next_sibling tree id) acc in let below1,after1 = loop (tree_first_child tree id) after2 in let tag = tree_tag_id tree id in update h tag below1 after2; Ptset.add tag (Ptset.union below1 below2), (Ptset.add tag after1) in let b,a = loop (tree_root tree) Ptset.empty in update h Tag.pcdata b a; h let contains_array = ref [| |] let init_contains t s = let a = text_contains t.doc s in Array.fast_sort (compare) a; contains_array := a let init_naive_contains t s = let i,j = tree_doc_ids t.doc (tree_root t.doc) in let regexp = Str.regexp_string s in let matching arg = try let _ = Str.search_forward regexp arg 0; in true with _ -> false in let rec loop n acc l = if n >= j then acc,l else let s = text_get_text t.doc n in if matching s then loop (n+1) (n::acc) (l+1) else loop (n+1) acc l in let acc,l = loop i [] 0 in let a = Array.create l nil in let _ = List.fold_left (fun cpt e -> a.(cpt) <- e; (cpt-1)) (l-1) acc in contains_array := a module DocIdSet = struct include Set.Make (struct type t = [`Text] node let compare = compare_node end) end let is_nil t = match t.node with | Nil -> true | Node(i) -> equal_node i nil | _ -> false let is_node t = match t.node with | Node(i) -> not(equal_node i nil) | _ -> false let node_of_t t = let _ = Tag.init (Obj.magic t) in let table = collect_tags t in (* let _ = Hashtbl.iter (fun t (sb,sa) -> Printf.eprintf "'%s' -> { " (Tag.to_string t); Ptset.iter (fun i -> Printf.eprintf "'%s' " (Tag.to_string i)) sb; Printf.eprintf "}\n { "; Ptset.iter (fun i -> Printf.eprintf "'%s' " (Tag.to_string i)) sa; Printf.eprintf "} \n----------------------------------\n"; ) table in *) { doc= t; node = Node(tree_root t); ttable = table; } let parse_xml_uri str = node_of_t (parse_xml_uri str !Options.sample_factor !Options.index_empty_texts !Options.disable_text_collection) let parse_xml_string str = node_of_t (parse_xml_string str !Options.sample_factor !Options.index_empty_texts !Options.disable_text_collection) external pool : tree -> Tag.pool = "%identity" let save t str = save_tree t.doc str let load ?(sample=64) str = node_of_t (load_tree str sample) let tag_pool t = pool t.doc let compare a b = match a.node,b.node with | Nil, Nil -> 0 | Nil,_ -> 1 | _ , Nil -> -1 | Node(i),Node(j) -> compare_node i j | Text(i,_), Text(j,_) -> compare_node i j | Node(i), Text(_,j) -> compare_node i j | Text(_,i), Node(j) -> compare_node i j let equal a b = (compare a b) == 0 let norm (n : [`Tree ] node ) = if tree_is_nil n then Nil else Node (n) let nts = function Nil -> "Nil" | Text (i,j) -> Printf.sprintf "Text (%i, %i)" i j | Node (i) -> Printf.sprintf "Node (%i)" i let mk_nil t = { t with node = Nil } let root n = { n with node = norm (tree_root n.doc) } let is_root n = match n.node with | Node(t) -> (int_of_node t) == 0 | _ -> false let parent n = let node' = match n.node with (* inlined parent *) | Node(t) when (int_of_node t)== 0 -> Nil | Node(t) -> let txt = tree_prev_text n.doc t in if text_is_empty n.doc txt then let ps = tree_prev_sibling n.doc t in if tree_is_nil ps then Node(tree_parent n.doc t) else Node(ps) else Text(txt,t) | Text(i,t) -> let ps = tree_prev_doc n.doc i in if tree_is_nil ps then Node (tree_parent_doc n.doc i) else Node(ps) | _ -> failwith "parent" in { n with node = node' } let node_child n = match n.node with | Node i -> { n with node= norm(tree_first_child n.doc i) } | _ -> { n with node = Nil } let node_sibling n = match n.node with | Node i -> { n with node= norm(tree_next_sibling n.doc i) } | _ -> { n with node = Nil } let node_sibling_ctx n _ = match n.node with | Node i -> { n with node= norm(tree_next_sibling n.doc i) } | _ -> { n with node = Nil } let first_child n = let node' = match n.node with | Node (t) -> let fs = tree_first_child n.doc t in if equal_node nil fs then let txt = tree_my_text n.doc t in if equal_node nil txt then Nil else Text(txt,nil) else let txt = tree_prev_text n.doc fs in if equal_node nil txt then Node(fs) else Text(txt, fs) | Text(_,_) -> Nil | Nil -> failwith "first_child" in { n with node = node'} let next_sibling n = let node' = match n.node with | Text (_,ns) -> norm ns | Node(t) -> let ns = tree_next_sibling n.doc t in let txt = tree_next_text n.doc t in if equal_node nil txt then norm ns else Text(txt, ns) | Nil -> failwith "next_sibling" in { n with node = node'} let next_sibling_ctx n _ = next_sibling n let left = first_child let right = next_sibling let id t = match t.node with | Node(n) -> tree_node_xml_id t.doc n | Text(i,_) -> tree_text_xml_id t.doc i | _ -> -1 let tag t = match t.node with | Text(_) -> Tag.pcdata | Node(n) -> tree_tag_id t.doc n | _ -> failwith "tag" (* let string_below t id = let strid = parent_doc t.doc id in match t.node with | Node(NC(i)) -> (Tree.equal i strid) || (is_ancestor t.doc i strid) | Node(SC(i,_)) -> Text.equal i id | _ -> false let tagged_foll t tag = if tag = Tag.attribute || tag = Tag.pcdata then failwith "tagged_foll" else match t with | { doc=d; node=Node(NC n) } -> { t with node = norm (tagged_foll d n tag) } | { doc=d; node=Node(SC (_,n)) } when is_nil n -> { t with node= Nil } | { doc=d; node=Node(SC (_,n)) } -> let nnode = if tag_id d n == tag then n else let n' = tagged_desc d n tag in if is_nil n' then tagged_foll d n tag else n' in {t with node= norm nnode} | _ -> { t with node=Nil } let tagged_desc t tag = if tag = Tag.attribute || tag = Tag.pcdata then failwith "tagged_desc" else match t with | { doc=d; node=Node(NC n) } -> { t with node = norm (tagged_desc d n tag) } | _ -> { t with node=Nil } *) let select_next tb tf t s = match s.node with | Node (below) -> begin match t.node with | Node( n) -> { t with node = norm (tree_select_next t.doc n (Ptset.to_int_vector tb) (Ptset.to_int_vector tf) below) } | Text (i,n) when equal_node nil n -> let p = tree_parent_doc t.doc i in { t with node = norm (tree_select_next t.doc p (Ptset.to_int_vector tb) (Ptset.to_int_vector tf) below) } | Text(_,n) -> if Ptset.mem (tree_tag_id t.doc n) (Ptset.union tb tf) then { t with node=Node(n) } else let vb = Ptset.to_int_vector tb in let vf = Ptset.to_int_vector tf in let node = let dsc = tree_select_below t.doc n vb vf in if equal_node nil dsc then tree_select_next t.doc n vb vf below else dsc in { t with node = norm node } | _ -> {t with node = Nil } end | _ -> { t with node = Nil } let select_foll_only tf t s = match s.node with | Node (below) -> begin match t.node with | Node(n) -> { t with node= norm (tree_select_foll_only t.doc n (Ptset.to_int_vector tf) below) } | Text(i,n) when equal_node nil n -> let p = tree_parent_doc t.doc i in { t with node= norm (tree_select_foll_only t.doc p (Ptset.to_int_vector tf) below) } | Text(_,n) -> if Ptset.mem (tree_tag_id t.doc n) tf then { t with node=Node(n) } else let vf = Ptset.to_int_vector tf in let node = let dsc = tree_select_desc_only t.doc n vf in if tree_is_nil dsc then tree_select_foll_only t.doc n vf below else dsc in { t with node = norm node } | _ -> { t with node = Nil } end | _ -> {t with node=Nil } let select_below tc td t= match t.node with | Node( n) -> let vc = Ptset.to_int_vector tc in let vd = Ptset.to_int_vector td in { t with node= norm(tree_select_below t.doc n vc vd) } | _ -> { t with node=Nil } let select_desc_only td t = match t.node with | Node(n) -> let vd = Ptset.to_int_vector td in { t with node = norm(tree_select_desc_only t.doc n vd) } | _ -> { t with node = Nil } let tagged_desc tag t = match t.node with | Node(n) -> { t with node = norm(tree_tagged_desc t.doc n tag) } | _ -> { t with node = Nil } let tagged_foll_below tag t s = match s.node with | Node (below) -> begin match t.node with | Node(n) -> { t with node= norm (tree_tagged_foll_below t.doc n tag below) } | Text(i,n) when equal_node nil n -> let p = tree_prev_doc t.doc i in { t with node= norm (tree_tagged_foll_below t.doc p tag below) } | Text(_,n) -> if (tree_tag_id t.doc n) == tag then { t with node=Node(n) } else let node = let dsc = tree_tagged_desc t.doc n tag in if tree_is_nil dsc then tree_tagged_foll_below t.doc n tag below else dsc in { t with node = norm node } | _ -> { t with node = Nil } end | _ -> {t with node=Nil } let last_idx = ref 0 let array_find a i j = let l = Array.length a in let rec loop idx x y = if x > y || idx >= l then nil else if a.(idx) >= x then if a.(idx) > y then nil else (last_idx := idx;a.(idx)) else loop (idx+1) x y in if a.(0) > j || a.(l-1) < i then nil else loop !last_idx i j let text_below t = let l = Array.length !contains_array in if l = 0 then { t with node=Nil } else match t.node with | Node(n) -> let i,j = tree_doc_ids t.doc n in let id = array_find !contains_array i j in if id == nil then { t with node=Nil } else { t with node = Text(id, tree_next_sibling t.doc (tree_prev_doc t.doc id)) } | _ -> { t with node = Nil } let text_next t root = let l = Array.length !contains_array in if l = 0 then { t with node=Nil } else let inf = match t.node with | Node(n) -> snd(tree_doc_ids t.doc n)+1 | Text(i,_) -> i+1 | _ -> assert false in match root.node with | Node (n) -> let _,j = tree_doc_ids t.doc n in let id = array_find !contains_array inf j in if id == nil then { t with node= Nil } else { t with node = Text(id,tree_next_sibling t.doc (tree_prev_doc t.doc id)) } | _ -> { t with node = Nil} (* let subtree_tags t tag = match t with { doc = d; node = Node(NC n) } -> subtree_tags d n tag | _ -> 0 let select_desc_array = ref [| |] let idx = ref 0 let init_tagged_next t tagid = let l = subtree_tags (root t) tagid in tagged_desc_array := Array.create l { t with node= Nil }; let i = ref 0 in let rec collect t = if is_node t then begin if tag t == tagid then begin !tagged_desc_array.(!i) <- t; incr i; end; collect (first_child t); collect (next_sibling t) end; in collect t; idx := 0 let print_id ppf v = let pr x= Format.fprintf ppf x in match v with { node=Nil } -> pr "NULLT: -1" | { node=String(i) } | { node=Node(SC(i,_)) } -> pr "DocID: %i" (int_of_node i) | { node=Node(NC(i)) } -> pr "Node: %i" (int_of_node i) (* let tagged_next t tag = if !idx >= Array.length !tagged_desc_array then {t with node=Nil} else let r = !tagged_desc_array.(!idx) in incr idx; r *) let has_tagged_foll t tag = is_node (tagged_foll t tag) let has_tagged_desc t tag = is_node (tagged_desc t tag) let contains t s = Array.fold_left (fun a i -> DocIdSet.add i a) DocIdSet.empty (Text.contains t.doc s) let contains_old t s = let regexp = Str.regexp_string s in let matching arg = try let _ = Str.search_forward regexp arg 0; in true with _ -> false in let rec find t acc = match t.node with | Nil -> acc | String i -> if matching (string t) then DocIdSet.add i acc else acc | Node(_) -> (find (left t )) ((find (right t)) acc) in find t DocIdSet.empty let contains_iter t s = let regexp = Str.regexp_string s in let matching arg = try let _ = Str.search_forward regexp arg 0; in true with _ -> false in let size = Text.size t.doc in let rec find acc n = if n == size then acc else find (if matching (Text.get_cached_text t.doc (Obj.magic n)) then DocIdSet.add (Obj.magic n) acc else acc) (n+1) in find DocIdSet.empty 0 let count_contains t s = Text.count_contains t.doc s *) let count t s = text_count t.doc s (* let is_left t = if is_root t then false else if tag (parent t) == Tag.pcdata then false else let u = left (parent t) in (id t) == (id u) *) let print_xml_fast outc t = let rec loop ?(print_right=true) t = match t.node with | Nil -> () | Text(i,n) -> output_string outc (text_get_text t.doc i); if print_right then loop (right t) | Node (n) -> let tg = Tag.to_string (tag t) in let l = left t and r = right t in output_char outc '<'; output_string outc tg; ( match l.node with Nil -> output_string outc "/>" | Node(_) when Tag.equal (tag l) Tag.attribute -> (loop_attributes (left l); match (right l).node with | Nil -> output_string outc "/>" | _ -> output_char outc '>'; loop (right l); output_string outc "' ) | _ -> output_char outc '>'; loop l; output_string outc "' );if print_right then loop r and loop_attributes a = match a.node with | Node(_) -> let value = match (left a).node with | Text(i,_) -> text_get_text a.doc i | _ -> assert false in output_char outc ' '; output_string outc (Tag.to_string (tag a)); output_string outc "=\""; output_string outc value; output_char outc '"'; loop_attributes (right a) | _ -> () in loop ~print_right:false t let print_xml_fast outc t = if Tag.to_string (tag t) = "" then print_xml_fast outc (first_child t) else print_xml_fast outc t let tags_below t tag = fst(Hashtbl.find t.ttable tag) let tags_after t tag = snd(Hashtbl.find t.ttable tag) let tags t tag = Hashtbl.find t.ttable tag