(******************************************************************************) (* SXSI : XPath evaluator *) (* Kim Nguyen (Kim.Nguyen@nicta.com.au) *) (* Copyright NICTA 2008 *) (* Distributed under the terms of the LGPL (see LICENCE) *) (******************************************************************************) INCLUDE "debug.ml" module type BINARY = sig type node_content type string_content type descr = Nil | Node of node_content |String of string_content type t val parse_xml_uri : string -> t val parse_xml_string : string -> t val save : t -> string -> unit val load : ?sample:int -> string -> t val tag_pool : t -> Tag.pool val string : t -> string val descr : t -> descr val is_node : t -> bool val left : t -> t val right : t -> t val first_child : t -> t val next_sibling : t -> t val parent : t -> t val root : t -> t val is_root : t -> bool val id : t -> int val tag : t -> Tag.t val print_xml_fast : out_channel -> t -> unit val compare : t -> t -> int val equal : t -> t -> bool module DocIdSet : sig include Set.S end with type elt = string_content val string_below : t -> string_content -> bool val contains : t -> string -> DocIdSet.t val contains_old : t -> string -> DocIdSet.t val contains_iter : t -> string -> DocIdSet.t val count_contains : t -> string -> int val count : t -> string -> int val dump : t -> unit val get_string : t -> string_content -> string val has_tagged_desc : t -> Tag.t -> bool val has_tagged_foll : t -> Tag.t -> bool val tagged_desc : t -> Tag.t -> t val tagged_foll : t -> Tag.t -> t val tagged_below : t -> Ptset.t -> Ptset.t -> t val tagged_next : t -> Ptset.t -> Ptset.t -> t -> t val tagged_desc_only : t -> Ptset.t -> t val tagged_foll_only : t -> Ptset.t -> t -> t val text_below : t -> t val text_next : t -> t -> t val init_tagged_next : t -> Tag.t -> unit val subtree_tags : t -> Tag.t -> int val is_left : t -> bool val print_id : Format.formatter -> t -> unit val test_xml_tree : Format.formatter -> Ptset.t -> t -> unit val init_contains : t -> string -> unit val init_naive_contains : t -> string -> unit val mk_nil : t -> t val test_jump : t -> Tag.t -> unit val time_xml_tree : t -> Tag.t -> int list val time_xml_tree2 : t -> Tag.t -> int list end module XML = struct type t type 'a node = int type node_kind = [`Text | `Tree ] let compare : 'a node -> 'a node -> int = (-) let equal : 'a node -> 'a node -> bool = (==) (* abstract type, values are pointers to a XMLTree C++ object *) external int_of_node : 'a node -> int = "%identity" external parse_xml_uri : string -> int -> bool -> bool -> t = "caml_call_shredder_uri" external parse_xml_string : string -> int -> bool -> bool -> t = "caml_call_shredder_string" external save_tree : t -> string -> unit = "caml_xml_tree_save" external load_tree : string -> int -> t = "caml_xml_tree_load" module Text = struct let equal : [`Text] node -> [`Text] node -> bool = equal (* Todo *) external nullt : unit -> [`Text ] node = "caml_xml_tree_nullt" let nil = nullt () external get_text : t -> [`Text] node -> string = "caml_text_collection_get_text" (* let get_text t n = if equal nil n then "" else get_text t n *) external is_empty : t -> [`Text ] node -> bool = "caml_text_collection_empty_text" let is_empty t n = (equal nil n) || is_empty t n external get_cached_text : t -> [`Text ] node -> string = "caml_text_collection_get_cached_text" let get_text t n = if equal nil n then "" else get_cached_text t n external size : t -> int = "caml_text_collection_size" external is_contains : t -> string -> bool = "caml_text_collection_is_contains" external count_contains : t -> string -> int = "caml_text_collection_count_contains" external count : t -> string -> int = "caml_text_collection_count" external contains : t -> string -> [`Text ] node array = "caml_text_collection_contains" end module Tree = struct let equal : [`Tree ] node -> [`Tree] node -> bool = equal external serialize : t -> string -> unit = "caml_xml_tree_serialize" external unserialize : string -> t = "caml_xml_tree_unserialize" external root : t -> [`Tree] node = "caml_xml_tree_root" external nullt : unit -> [`Tree ] node = "caml_xml_tree_nullt" let nil = nullt () let is_nil x = equal x nil external parent : t -> [`Tree] node -> [`Tree] node = "caml_xml_tree_parent" external parent_doc : t -> [`Text ] node -> [`Tree ] node = "caml_xml_tree_parent_doc" external prev_doc : t -> [`Text ] node -> [`Tree ] node = "caml_xml_tree_prev_doc" external first_child : t -> [`Tree] node -> [`Tree] node = "caml_xml_tree_first_child" external next_sibling : t -> [`Tree] node -> [`Tree] node = "caml_xml_tree_next_sibling" external prev_sibling : t -> [`Tree] node -> [`Tree] node = "caml_xml_tree_prev_sibling" external is_leaf : t -> [`Tree] node -> bool = "caml_xml_tree_is_leaf" (* external tag : t -> [`Tree ] node -> T = "caml_xml_tree_tag"*) external tag_id : t -> [`Tree ] node -> Tag.t = "caml_xml_tree_tag_id" (* let tag_hash = Array.make 6_000_000 (Tag.nullt) let tag_id t id = let tag = tag_hash.(int_of_node id) in if tag != Tag.nullt then tag else let tag = tag_id t id in (tag_hash.(int_of_node id) <- tag; tag) *) let is_last t n = equal nil (next_sibling t n) external prev_text : t -> [`Tree] node -> [`Text ] node = "caml_xml_tree_prev_text" external my_text : t -> [`Tree] node -> [`Text ] node = "caml_xml_tree_my_text" external next_text : t -> [`Tree] node -> [`Text ] node = "caml_xml_tree_next_text" external doc_ids : t -> [`Tree ] node -> [`Text ] node * [`Text ] node = "caml_xml_tree_doc_ids" external text_xml_id : t -> [`Text ] node -> int = "caml_xml_tree_text_xml_id" external node_xml_id : t -> [`Tree ] node -> int = "caml_xml_tree_node_xml_id" external is_ancestor : t -> [`Tree ] node -> [`Tree ] node -> bool = "caml_xml_tree_is_ancestor" external tagged_desc : t -> [`Tree ] node -> Tag.t -> [`Tree ] node = "caml_xml_tree_tagged_desc" external tagged_foll : t -> [`Tree ] node -> Tag.t -> [`Tree ] node = "caml_xml_tree_tagged_foll" external subtree_tags : t -> [`Tree ] node -> Tag.t -> int = "caml_xml_tree_subtree_tags" external tagged_below : t -> [`Tree ] node -> Ptset.int_vector -> Ptset.int_vector -> [`Tree ] node = "caml_xml_tree_tagged_below" external tagged_desc_only : t -> [`Tree ] node -> Ptset.int_vector -> [`Tree ] node = "caml_xml_tree_tagged_desc_only" external tagged_next : t -> [`Tree ] node -> Ptset.int_vector -> Ptset.int_vector -> [`Tree ] node -> [`Tree ] node = "caml_xml_tree_tagged_next" external tagged_foll_only : t -> [`Tree ] node -> Ptset.int_vector -> [`Tree ] node -> [`Tree ] node = "caml_xml_tree_tagged_foll_only" external tagged_desc_or_foll_only : t -> [`Tree ] node -> Ptset.int_vector -> [`Tree ] node -> [`Tree ] node = "caml_xml_tree_tagged_foll_only" external tagged_foll_below : t -> [`Tree ] node -> Tag.t -> [`Tree ] node -> [`Tree ] node = "caml_xml_tree_tagged_foll_below" let test_jump tree tag = let rec loop id ctx = if id != nil then let first = tagged_desc tree id tag and next = tagged_desc tree id tag in loop first id; loop next ctx in loop (root tree) (root tree) let test_xml_tree ppf tags v = let pr x = Format.fprintf ppf x in let rec aux id = if (is_nil id) then () else begin pr "Node %i, (Tag) %i='%s' (GetTagName), NodeXMLId (Preorder)=%i\n%!" (int_of_node id) (tag_id v id) (Tag.to_string (tag_id v id)) (node_xml_id v id); pr "DocID of PrevText,MyText,NextText : (%i = %s,%i = %s,%i = %s) ParentDoc(my_text)=%i PrevDoc(next_text)=%i\n%!" (int_of_node (prev_text v id)) (Text.get_text v (prev_text v id)) (int_of_node (my_text v id)) (Text.get_text v (my_text v id)) (int_of_node (next_text v id)) (Text.get_text v (next_text v id)) (int_of_node(parent_doc v (my_text v id))) (int_of_node(prev_doc v (next_text v id))); let i1,i2 = doc_ids v id in pr "Testing DocIds below (%i,%i)*\n%!" (int_of_node i1) (int_of_node i2); pr "Testing Tagged*\n%!"; Ptset.iter (fun t -> let str = Tag.to_string t in if Tag.pcdata <> t then begin pr "Tag: %s : \n%!" str; pr "TaggedDesc = %i%!, " (tagged_desc v id t); pr "TaggedFoll = %i\n%!" (tagged_foll v id t); pr "SubtreeTags = %i\n%!" (subtree_tags v id t); end) tags; pr "----------------------------\n"; aux(first_child v id); aux(next_sibling v id); end in aux (root v) let rrrr = ref 0 let time_xml_tree v tag = let rec aux id acc = incr rrrr; if (is_nil id) then acc else begin let acc = if tag == (tag_id v id) then id::acc else acc in aux (next_sibling v id) (aux (first_child v id) acc); end in let r = aux (root v) [] in Printf.eprintf "%i\n%!" !rrrr;r let rrrr2 = ref 0 let time_xml_tree2 v tag = let rec aux id acc ctx= incr rrrr2; if (is_nil id) then acc else begin let acc = if tag == (tag_id v id) then id::acc else acc in aux (tagged_foll_below v id tag ctx) (aux (tagged_desc v id tag) acc id) ctx; end in let r = aux (root v) [] (root v) in Printf.eprintf "%i\n%!" !rrrr2; r let print_skel t = let rec aux id = if (is_nil id) then Printf.eprintf "#\n" else begin Printf.eprintf "Node %i has tag '%i=%s' DocOrder=%i, DocID of PrevText,MyText,NextText : (%i = %s,%i = %s,%i = %s) parent_doc(my_text)=%i\n%!" (int_of_node id) (tag_id t id) (Tag.to_string (tag_id t id)) (node_xml_id t id) (int_of_node (prev_text t id)) (Text.get_text t (prev_text t id)) (int_of_node (my_text t id)) (Text.get_text t (my_text t id)) (int_of_node (next_text t id)) (Text.get_text t (next_text t id)) (int_of_node(parent_doc t (my_text t id))); aux(first_child t id); aux(next_sibling t id); end in aux (root t) let traversal t = let rec aux id = if not (is_nil id) then begin (* ignore (tag t id); ignore (Text.get_text t (prev_text t id)); if (is_leaf t id) then ignore (Text.get_text t (my_text t id)); if (is_last t id) then ignore (Text.get_text t (next_text t id)); *) aux (first_child t id); aux (next_sibling t id); end in aux (root t) end module Binary = struct type node_content = NC of [`Tree ] node | SC of [`Text ] node * [`Tree ] node type string_content = [ `Text ] node type descr = | Nil | Node of node_content | String of string_content type doc = t type t = { doc : doc; node : descr } let dump { doc=t } = Tree.print_skel t let test_xml_tree ppf tags { doc=t } = Tree.test_xml_tree ppf tags t let time_xml_tree { doc=t } tag = Tree.time_xml_tree t tag let time_xml_tree2 { doc=t } tag = Tree.time_xml_tree2 t tag let test_jump { doc=t } tag = Tree.test_jump t tag let contains_array = ref [| |] let init_contains t s = let a = Text.contains t.doc s in Array.fast_sort (compare) a; contains_array := a let init_naive_contains t s = let i,j = Tree.doc_ids t.doc (Tree.root t.doc) in let regexp = Str.regexp_string s in let matching arg = try let _ = Str.search_forward regexp arg 0; in true with _ -> false in let rec loop n acc l = if n >= j then acc,l else let s = (*Printf.eprintf "%i \n%!" n;*)Text.get_cached_text t.doc n in if matching s then loop (n+1) (n::acc) (l+1) else loop (n+1) acc l in let acc,l = loop i [] 0 in let a = Array.create l Text.nil in let _ = List.fold_left (fun cpt e -> a.(cpt) <- e; (cpt-1)) (l-1) acc in contains_array := a module DocIdSet = struct include Set.Make (struct type t = string_content let compare = (-) end) end let is_node = function { node=Node(_) } -> true | _ -> false let get_string t (i:string_content) = Text.get_text t.doc i open Tree let node_of_t t = { doc= t; node = Node(NC (root t)) } let parse_xml_uri str = node_of_t (MM((parse_xml_uri str !Options.sample_factor !Options.index_empty_texts !Options.disable_text_collection),__LOCATION__)) let parse_xml_string str = node_of_t (MM((parse_xml_string str !Options.sample_factor !Options.index_empty_texts !Options.disable_text_collection),__LOCATION__)) let save t str = save_tree t.doc str let load ?(sample=64) str = node_of_t (load_tree str sample) external pool : doc -> Tag.pool = "%identity" let tag_pool t = pool t.doc let compare a b = match a.node,b.node with | Node(NC i),Node(NC j) -> compare i j | _, Node(NC( _ )) -> 1 | Node(SC (i,_)),Node(SC (j,_)) -> compare i j | Node(NC( _ )),Node(SC (_,_)) -> -1 | _, Node(SC (_,_)) -> 1 | String i, String j -> compare i j | Node _ , String _ -> -1 | _ , String _ -> 1 | Nil, Nil -> 0 | _,Nil -> -1 let equal a b = (compare a b) == 0 let string t = match t.node with | String i -> Text.get_text t.doc i | _ -> assert false let norm (n : [`Tree ] node ) = if is_nil n then Nil else Node (NC n) let descr t = t.node let nts = function Nil -> "Nil" | String i -> Printf.sprintf "String %i" i | Node (NC t) -> Printf.sprintf "Node (NC %i)" (int_of_node t) | Node (SC (t,i)) -> Printf.sprintf "Node (SC (%i,%i))" (int_of_node t) (int_of_node i) let mk_nil t = { t with node = Nil } let root n = { n with node = norm (Tree.root n.doc) } let is_root n = match n.node with | Node(NC t) -> (int_of_node t) == 0 | _ -> false let parent n = if is_root n then { n with node=Nil} else let node' = match n.node with | Node(NC t) -> let txt = prev_text n.doc t in if Text.is_empty n.doc txt then let ps = Tree.prev_sibling n.doc t in if is_nil ps then Node(NC (Tree.parent n.doc t)) else Node(NC ps) else Node(SC (txt,t)) | Node(SC(i,t)) -> let ps = Tree.prev_sibling n.doc t in if is_nil ps then Node (NC(parent_doc n.doc i)) else Node(NC ps) | _ -> failwith "parent" in { n with node = node' } let first_child n = let node' = match n.node with | Node (NC t) when is_leaf n.doc t -> let txt = my_text n.doc t in if Text.is_empty n.doc txt then Nil else Node(SC (txt,Tree.nil)) | Node (NC t) -> let fs = first_child n.doc t in let txt = prev_text n.doc fs in if Text.is_empty n.doc txt then norm fs else Node (SC (txt, fs)) | Node(SC (i,_)) -> String i | Nil | String _ -> failwith "first_child" in { n with node = node'} let next_sibling n = let node' = match n.node with | Node (SC (_,ns)) -> norm ns | Node(NC t) -> let ns = next_sibling n.doc t in let txt = next_text n.doc t in if Text.is_empty n.doc txt then norm ns else Node (SC (txt, ns)) | Nil | String _ -> failwith "next_sibling" in { n with node = node'} let left = first_child let right = next_sibling let id = function { doc=d; node=Node(NC n)} -> node_xml_id d n | { doc=d; node=Node(SC (i,_) )} -> text_xml_id d i | _ -> -1 (* Format.fprintf Format.err_formatter "Failure id on %s\n%!" (nts x.node); failwith "id" *) let tag = function { node=Node(SC _) } -> Tag.pcdata | { doc=d; node=Node(NC n)} -> tag_id d n | _ -> failwith "tag" let string_below t id = let strid = parent_doc t.doc id in match t.node with | Node(NC(i)) -> (Tree.equal i strid) || (is_ancestor t.doc i strid) | Node(SC(i,_)) -> Text.equal i id | _ -> false let tagged_foll t tag = if tag = Tag.attribute || tag = Tag.pcdata then failwith "tagged_foll" else match t with | { doc=d; node=Node(NC n) } -> { t with node = norm (tagged_foll d n tag) } | { doc=d; node=Node(SC (_,n)) } when is_nil n -> { t with node= Nil } | { doc=d; node=Node(SC (_,n)) } -> let nnode = if tag_id d n == tag then n else let n' = tagged_desc d n tag in if is_nil n' then tagged_foll d n tag else n' in {t with node= norm nnode} | _ -> { t with node=Nil } let tagged_desc t tag = if tag = Tag.attribute || tag = Tag.pcdata then failwith "tagged_desc" else match t with | { doc=d; node=Node(NC n) } -> { t with node = norm (tagged_desc d n tag) } | _ -> { t with node=Nil } let tagged_next t tb tf s = match s with | { node = Node (NC(below)) } -> begin match t with | { doc = d; node=Node(NC n) } -> { t with node= norm (tagged_next d n (Ptset.to_int_vector tb) (Ptset.to_int_vector tf) below) } | { doc = d; node=Node(SC (i,n) ) } when is_nil n -> let p = parent_doc d i in { t with node= norm (tagged_next d p (Ptset.to_int_vector tb) (Ptset.to_int_vector tf) below) } | { doc = d; node=Node(SC (_,n) ) } -> if Ptset.mem (tag_id d n) (Ptset.union tb tf) then { t with node=Node(NC(n)) } else let vb = Ptset.to_int_vector tb in let vf = Ptset.to_int_vector tf in let node = let dsc = tagged_below d n vb vf in if is_nil dsc then tagged_next d n vb vf below else dsc in { t with node = norm node } | _ -> {t with node=Nil } end | _ -> {t with node=Nil } let tagged_foll_only t tf s = match s with | { node = Node (NC(below)) } -> begin match t with | { doc = d; node=Node(NC n) } -> { t with node= norm (tagged_foll_only d n (Ptset.to_int_vector tf) below) } | { doc = d; node=Node(SC (i,n) ) } when is_nil n -> let p = parent_doc d i in { t with node= norm (tagged_foll_only d p (Ptset.to_int_vector tf) below) } | { doc = d; node=Node(SC (_,n) ) } -> if Ptset.mem (tag_id d n) tf then { t with node=Node(NC(n)) } else let vf = Ptset.to_int_vector tf in let node = let dsc = tagged_desc_only d n vf in if is_nil dsc then tagged_foll_only d n vf below else dsc in { t with node = norm node } | _ -> {t with node=Nil } end | _ -> {t with node=Nil } let tagged_below t tc td = match t with | { doc = d; node=Node(NC n) } -> let vc = Ptset.to_int_vector tc in let vd = Ptset.to_int_vector td in { t with node= norm(tagged_below d n vc vd) } | _ -> { t with node=Nil } let tagged_desc_only t td = match t with | { doc = d; node=Node(NC n) } -> let vd = Ptset.to_int_vector td in { t with node= norm(tagged_desc_only d n vd) } | _ -> { t with node=Nil } let last_idx = ref 0 let array_find a i j = let l = Array.length a in let rec loop idx x y = if x > y || idx >= l then Text.nil else if a.(idx) >= x then if a.(idx) > y then Text.nil else (last_idx := idx;a.(idx)) else loop (idx+1) x y in if a.(0) > j || a.(l-1) < i then Text.nil else loop !last_idx i j let text_below t = let l = Array.length !contains_array in if l = 0 then { t with node=Nil } else match t with | { doc = d; node=Node(NC n) } -> let i,j = doc_ids t.doc n in let id = array_find !contains_array i j in if id == Text.nil then { t with node=Nil } else {t with node = Node(SC(id, Tree.next_sibling d (Tree.prev_doc d id))) } | _ -> { t with node=Nil } let text_next t root = let l = Array.length !contains_array in if l = 0 then { t with node=Nil } else let inf = match t with | { doc =d; node = Node(NC n) } -> snd(doc_ids d n)+1 | { node = Node(SC(i,_)) } -> i+1 | _ -> assert false in match root with | { doc = d; node= Node (NC n) } -> let _,j = doc_ids t.doc n in let id = array_find !contains_array inf j in if id == Text.nil then { doc = d; node= Nil } else {doc = d; node = Node(SC(id,Tree.next_sibling d (Tree.prev_doc d id))) } | _ -> { t with node=Nil} let subtree_tags t tag = match t with { doc = d; node = Node(NC n) } -> subtree_tags d n tag | _ -> 0 let tagged_desc_array = ref [| |] let idx = ref 0 let init_tagged_next t tagid = let l = subtree_tags (root t) tagid in tagged_desc_array := Array.create l { t with node= Nil }; let i = ref 0 in let rec collect t = if is_node t then begin if tag t == tagid then begin !tagged_desc_array.(!i) <- t; incr i; end; collect (first_child t); collect (next_sibling t) end; in collect t; idx := 0 let print_id ppf v = let pr x= Format.fprintf ppf x in match v with { node=Nil } -> pr "NULLT: -1" | { node=String(i) } | { node=Node(SC(i,_)) } -> pr "DocID: %i" (int_of_node i) | { node=Node(NC(i)) } -> pr "Node: %i" (int_of_node i) (* let tagged_next t tag = if !idx >= Array.length !tagged_desc_array then {t with node=Nil} else let r = !tagged_desc_array.(!idx) in incr idx; r *) let has_tagged_foll t tag = is_node (tagged_foll t tag) let has_tagged_desc t tag = is_node (tagged_desc t tag) let contains t s = Array.fold_left (fun a i -> DocIdSet.add i a) DocIdSet.empty (Text.contains t.doc s) let contains_old t s = let regexp = Str.regexp_string s in let matching arg = try let _ = Str.search_forward regexp arg 0; in true with _ -> false in let rec find t acc = match t.node with | Nil -> acc | String i -> if matching (string t) then DocIdSet.add i acc else acc | Node(_) -> (find (left t )) ((find (right t)) acc) in find t DocIdSet.empty let contains_iter t s = let regexp = Str.regexp_string s in let matching arg = try let _ = Str.search_forward regexp arg 0; in true with _ -> false in let size = Text.size t.doc in let rec find acc n = if n == size then acc else find (if matching (Text.get_cached_text t.doc (Obj.magic n)) then DocIdSet.add (Obj.magic n) acc else acc) (n+1) in find DocIdSet.empty 0 let count_contains t s = Text.count_contains t.doc s let count t s = Text.count t.doc s let is_left t = if is_root t then false else if tag (parent t) == Tag.pcdata then false else let u = left (parent t) in (id t) == (id u) let print_xml_fast outc t = let rec loop ?(print_right=true) t = match t.node with | Nil -> () | String (s) -> output_string outc (Text.get_text t.doc s) | Node _ when Tag.equal (tag t) Tag.pcdata -> loop (left t); if print_right then loop (right t) | Node (_) -> let tg = Tag.to_string (tag t) in let l = left t and r = right t in output_char outc '<'; output_string outc tg; ( match l.node with Nil -> output_string outc "/>" | String _ -> assert false | Node(_) when Tag.equal (tag l) Tag.attribute -> (loop_attributes (left l); match (right l).node with | Nil -> output_string outc "/>" | _ -> output_char outc '>'; loop (right l); output_string outc "' ) | _ -> output_char outc '>'; loop l; output_string outc "' );if print_right then loop r and loop_attributes a = match a.node with | Node(_) -> let value = match (left a).node with | Nil -> "" | _ -> string (left(left a)) in output_char outc ' '; output_string outc (Tag.to_string (tag a)); output_string outc "=\""; output_string outc value; output_char outc '"'; loop_attributes (right a) | _ -> () in loop ~print_right:false t let print_xml_fast outc t = if Tag.to_string (tag t) = "" then print_xml_fast outc (first_child t) else print_xml_fast outc t let traversal t = Tree.traversal t.doc let full_traversal t = let rec aux n = match n.node with | Nil -> () | String i -> () (*ignore(Text.get_text t.doc i) *) | Node(_) -> (* tag_id n; *) aux (first_child n); aux (next_sibling n) in aux t let print_stats _ = () end end IFDEF DEBUG THEN module DEBUGTREE = struct let _timings = Hashtbl.create 107 let time _ref f arg = let t1 = Unix.gettimeofday () in let r = f arg in let t2 = Unix.gettimeofday () in let t = (1000. *.(t2 -. t1)) in let (time,count) = try Hashtbl.find _timings _ref with | Not_found -> 0.,0 in let time = time+. t and count = count + 1 in Hashtbl.replace _timings _ref (time,count);r include XML.Binary let first_child_ doc node = time ("XMLTree.FirstChild()") (XML.Tree.first_child doc) node let next_sibling_ doc node = time ("XMLTree.NextSibling()") (XML.Tree.next_sibling doc) node let is_empty_ text node = time ("TextCollection.IsEmpty()") (XML.Text.is_empty text) node let prev_text_ doc node = time ("XMLTree.PrevText()") (XML.Tree.prev_text doc) node let my_text_ doc node = time ("XMLTree.MyText()") (XML.Tree.my_text doc) node let next_text_ doc node = time ("XMLTree.NextText()") (XML.Tree.next_text doc) node let is_leaf_ doc node = time ("XMLTree.IsLeaf()") (XML.Tree.is_leaf doc ) node let node_xml_id_ doc node = time ("XMLTree.NodeXMLId()") (XML.Tree.node_xml_id doc ) node let text_xml_id_ doc node = time ("XMLTree.TextXMLId()") (XML.Tree.text_xml_id doc ) node let first_child n = let node' = match n.node with | Node (NC t) when is_leaf_ n.doc t -> let txt = my_text_ n.doc t in if is_empty_ n.doc txt then Nil else Node(SC (txt,XML.Tree.nil)) | Node (NC t) -> let fs = first_child_ n.doc t in let txt = prev_text_ n.doc fs in if is_empty_ n.doc txt then norm fs else Node (SC (txt, fs)) | Node(SC (i,_)) -> String i | Nil | String _ -> failwith "first_child" in { n with node = node'} let next_sibling n = let node' = match n.node with | Node (SC (_,ns)) -> norm ns | Node(NC t) -> let ns = next_sibling_ n.doc t in let txt = if XML.Tree.is_nil ns then next_text_ n.doc t else prev_text_ n.doc ns in if is_empty_ n.doc txt then norm ns else Node (SC (txt, ns)) | Nil | String _ -> failwith "next_sibling" in { n with node = node'} let id = function { doc=d; node=Node(NC n)} -> node_xml_id_ d n | { doc=d; node=Node(SC (i,_) )} -> text_xml_id_ d i | _ -> failwith "id" (* Wrapper around critical function *) let string t = time ("TextCollection.GetText()") (string) t let left = first_child let right = next_sibling let tag t = time ("XMLTree.GetTag()") (tag) t let print_stats ppf = let total_time,total_calls = Hashtbl.fold (fun _ (t,c) (tacc,cacc) -> tacc+. t, cacc + c) _timings (0.,0) in Format.fprintf ppf "Timing : Function Name, number of calls,%% of total calls, mean time, total time, %% of total time\n%!"; Hashtbl.iter (fun name (time,count) -> Format.fprintf ppf "%-27s% 8d\t% 4.2f%%\t% 4.6f ms\t% 4.6f ms\t%04.2f%%\n%!" name count (100. *. (float_of_int count)/.(float_of_int total_calls)) (time /. (float_of_int count)) time (100. *. time /. total_time)) _timings; Format.fprintf ppf "-------------------------------------------------------------------\n"; Format.fprintf ppf "%-27s% 8d\t% 4.0f%%\t########## ms\t% 4.6f ms\t% 4.0f%%\n%!" "Total" total_calls 100. total_time 100. let print_xml_fast outc t = let rec loop ?(print_right=true) t = match t.node with | Nil -> () | String (s) -> output_string outc (string t) | Node _ when Tag.equal (tag t) Tag.pcdata -> loop (left t); loop (right t) | Node (_) -> let tg = Tag.to_string (tag t) in let l = left t and r = right t in output_char outc '<'; output_string outc tg; ( match l.node with Nil -> output_string outc "/>" | String _ -> assert false | Node(_) when Tag.equal (tag l) Tag.attribute -> (loop_attributes (left l); match (right l).node with | Nil -> output_string outc "/>" | _ -> output_char outc '>'; loop (right l); output_string outc "' ) | _ -> output_char outc '>'; loop l; output_string outc "' );if print_right then loop r and loop_attributes a = match a.node with | Node(_) -> let value = match (left a).node with | Nil -> "" | _ -> string (left(left a)) in output_char outc ' '; output_string outc (Tag.to_string (tag a)); output_string outc "=\""; output_string outc value; output_char outc '"'; loop_attributes (right a) | _ -> () in loop ~print_right:false t let print_xml_fast outc t = if Tag.to_string (tag t) = "" then print_xml_fast outc (first_child t) else print_xml_fast outc t end module Binary = DEBUGTREE ELSE module Binary = XML.Binary END (* IFDEF DEBUG *)