(******************************************************************************) (* SXSI : XPath evaluator *) (* Kim Nguyen (Kim.Nguyen@nicta.com.au) *) (* Copyright NICTA 2008 *) (* Distributed under the terms of the LGPL (see LICENCE) *) (******************************************************************************) INCLUDE "debug.ml" module type BINARY = sig type node_content type string_content type descr = Nil | Node of node_content |String of string_content type t val parse_xml_uri : string -> t val parse_xml_string : string -> t val save : t -> string -> unit val load : ?sample:int -> string -> t val tag_pool : t -> Tag.pool val string : t -> string val descr : t -> descr val is_node : t -> bool val left : t -> t val right : t -> t val first_child : t -> t val next_sibling : t -> t val parent : t -> t val id : t -> int val tag : t -> Tag.t val print_xml_fast : out_channel -> t -> unit val compare : t -> t -> int val equal : t -> t -> bool module DocIdSet : sig include Set.S end with type elt = string_content val string_below : t -> string_content -> bool val contains : t -> string -> DocIdSet.t val contains_old : t -> string -> bool val dump : t -> unit val get_string : t -> string_content -> string end module XML = struct type t type 'a node = int type node_kind = [`Text | `Tree ] let compare : 'a node -> 'a node -> int = (-) let equal : 'a node -> 'a node -> bool = (==) (* abstract type, values are pointers to a XMLTree C++ object *) external int_of_node : 'a node -> int = "%identity" external parse_xml_uri : string -> int -> bool -> bool -> t = "caml_call_shredder_uri" external parse_xml_string : string -> int -> bool -> bool -> t = "caml_call_shredder_string" external save_tree : t -> string -> unit = "caml_xml_tree_save" external load_tree : string -> int -> t = "caml_xml_tree_load" module Text = struct let equal : [`Text] node -> [`Text] node -> bool = equal (* Todo *) external nullt : unit -> [`Text ] node = "caml_xml_tree_nullt" let nil = nullt () external get_text : t -> [`Text] node -> string = "caml_text_collection_get_text" let get_text t n = if equal nil n then "" else get_text t n external is_empty : t -> [`Text ] node -> bool = "caml_text_collection_empty_text" let is_empty t n = (equal nil n) || is_empty t n external is_contains : t -> string -> bool = "caml_text_collection_is_contains" external count_contains : t -> string -> int = "caml_text_collection_count_contains" external contains : t -> string -> [`Text ] node array = "caml_text_collection_contains" end module Tree = struct let equal : [`Tree ] node -> [`Tree] node -> bool = equal external serialize : t -> string -> unit = "caml_xml_tree_serialize" external unserialize : string -> t = "caml_xml_tree_unserialize" external root : t -> [`Tree] node = "caml_xml_tree_root" external nullt : unit -> [`Tree ] node = "caml_xml_tree_nullt" let nil = nullt () let is_nil x = equal x nil external parent : t -> [`Tree] node -> [`Tree] node = "caml_xml_tree_parent" external parent_doc : t -> [`Text ] node -> [`Tree ] node = "caml_xml_tree_parent_doc" external first_child : t -> [`Tree] node -> [`Tree] node = "caml_xml_tree_first_child" external next_sibling : t -> [`Tree] node -> [`Tree] node = "caml_xml_tree_next_sibling" external is_leaf : t -> [`Tree] node -> bool = "caml_xml_tree_is_leaf" (* external tag : t -> [`Tree ] node -> T = "caml_xml_tree_tag"*) external tag_id : t -> [`Tree ] node -> Tag.t = "caml_xml_tree_tag_id" let is_last t n = equal nil (next_sibling t n) external prev_text : t -> [`Tree] node -> [`Text ] node = "caml_xml_tree_prev_text" external my_text : t -> [`Tree] node -> [`Text ] node = "caml_xml_tree_my_text" external next_text : t -> [`Tree] node -> [`Text ] node = "caml_xml_tree_next_text" external text_xml_id : t -> [`Text ] node -> int = "caml_xml_tree_text_xml_id" external node_xml_id : t -> [`Tree ] node -> int = "caml_xml_tree_node_xml_id" external is_ancestor : t -> [`Tree ] node -> [`Tree ] node -> bool = "caml_xml_tree_is_ancestor" let print_skel t = let rec aux id = if (is_nil id) then Printf.eprintf "#\n" else begin Printf.eprintf "Node %i has tag '%s' DocOrder=%i, DocID of PrevText,MyText,NextText : (%i = %s,%i = %s,%i = %s) parent_doc(my_text)=%i\n%!" (int_of_node id) (Tag.to_string (tag_id t id)) (node_xml_id t id) (int_of_node (prev_text t id)) (Text.get_text t (prev_text t id)) (int_of_node (my_text t id)) (Text.get_text t (my_text t id)) (int_of_node (next_text t id)) (Text.get_text t (next_text t id)) (int_of_node(parent_doc t (my_text t id))); aux(first_child t id); aux(next_sibling t id); end in aux (root t) let traversal t = let rec aux id = if not (is_nil id) then begin (* ignore (tag t id); ignore (Text.get_text t (prev_text t id)); if (is_leaf t id) then ignore (Text.get_text t (my_text t id)); if (is_last t id) then ignore (Text.get_text t (next_text t id)); *) aux (first_child t id); aux (next_sibling t id); end in aux (root t) end module Binary = struct type node_content = NC of [`Tree ] node | SC of [`Text ] node * [`Tree ] node type string_content = [ `Text ] node type descr = | Nil | Node of node_content | String of string_content type doc = t type t = { doc : doc; node : descr } let dump { doc=t } = Tree.print_skel t module DocIdSet = struct include Set.Make (struct type t = string_content let compare = (-) end) end let is_node = function { node=Node(_) } -> true | _ -> false let get_string t (i:string_content) = Text.get_text t.doc i open Tree let node_of_t t = { doc= t; node = Node(NC (root t)) } let parse_xml_uri str = node_of_t (MM((parse_xml_uri str !Options.sample_factor !Options.index_empty_texts !Options.disable_text_collection),__LOCATION__)) let parse_xml_string str = node_of_t (MM((parse_xml_string str !Options.sample_factor !Options.index_empty_texts !Options.disable_text_collection),__LOCATION__)) let save t str = save_tree t.doc str let load ?(sample=64) str = node_of_t (load_tree str sample) external pool : doc -> Tag.pool = "%identity" let tag_pool t = pool t.doc let compare a b = match a.node,b.node with | Node(NC i),Node(NC j) -> compare i j | _, Node(NC( _ )) -> 1 | Node(SC (i,_)),Node(SC (j,_)) -> compare i j | Node(NC( _ )),Node(SC (_,_)) -> -1 | _, Node(SC (_,_)) -> 1 | String i, String j -> compare i j | Node _ , String _ -> -1 | _ , String _ -> 1 | Nil, Nil -> 0 | _,Nil -> -1 let equal a b = (compare a b) == 0 let string t = match t.node with | String i -> Text.get_text t.doc i | _ -> assert false let norm (n : [`Tree ] node ) = if is_nil n then Nil else Node (NC n) let descr t = t.node let nts = function Nil -> "Nil" | String i -> Printf.sprintf "String %i" i | Node (NC t) -> Printf.sprintf "Node (NC %i)" (int_of_node t) | Node (SC (t,i)) -> Printf.sprintf "Node (SC (%i,%i))" (int_of_node t) (int_of_node i) let parent n = let node' = match n.node with | Node(NC t) | Node(SC (_,t)) -> if (Tree.root n.doc) == t then Nil else Node(NC(Tree.parent n.doc t)) (* A parent node can never be a SC *) | _ -> assert false in { n with node = node' } let first_child n = let node' = match n.node with | Node (NC t) when is_leaf n.doc t -> let txt = my_text n.doc t in if Text.is_empty n.doc txt then Nil else Node(SC (txt,Tree.nil)) | Node (NC t) -> let fs = first_child n.doc t in let txt = prev_text n.doc fs in if Text.is_empty n.doc txt then norm fs else Node (SC (txt, fs)) | Node(SC (i,_)) -> String i | Nil | String _ -> failwith "first_child" in { n with node = node'} let next_sibling n = let node' = match n.node with | Node (SC (_,ns)) -> norm ns | Node(NC t) -> let ns = next_sibling n.doc t in let txt = next_text n.doc t in if Text.is_empty n.doc txt then norm ns else Node (SC (txt, ns)) | Nil | String _ -> failwith "next_sibling" in { n with node = node'} let left = first_child let right = next_sibling let id = function { doc=d; node=Node(NC n)} -> node_xml_id d n | { doc=d; node=Node(SC (i,_) )} -> text_xml_id d i | _ -> failwith "id" let tag = function { node=Node(SC _) } -> Tag.pcdata | { doc=d; node=Node(NC n)} -> tag_id d n | _ -> failwith "tag" (* let tag_id = function { node=Node(SC _) } -> () | { doc=d; node=Node(NC n)} -> tag_id d n | _ -> () *) let string_below t id = let strid = parent_doc t.doc id in match t.node with | Node(NC(i)) -> (Tree.equal i strid) || (is_ancestor t.doc i strid) | Node(SC(i,_)) -> Text.equal i id | _ -> false let contains t s = Array.fold_left (fun a i -> DocIdSet.add i a) DocIdSet.empty (Text.contains t.doc s) let contains_old t s = let regexp = Str.regexp_string s in let matching arg = try let _ = Str.search_forward regexp arg 0; in true with _ -> false in let rec find t = match t.node with | Nil -> false | String _ -> matching (string t) | Node(_) -> (find (left t )) || (find (right t)) in find t let print_xml_fast outc t = let rec loop ?(print_right=true) t = match t.node with | Nil -> () | String (s) -> output_string outc (string t) | Node _ when Tag.equal (tag t) Tag.pcdata -> loop (left t); if print_right then loop (right t) | Node (_) -> let tg = Tag.to_string (tag t) in let l = left t and r = right t in output_char outc '<'; output_string outc tg; ( match l.node with Nil -> output_string outc "/>" | String _ -> assert false | Node(_) when Tag.equal (tag l) Tag.attribute -> (loop_attributes (left l); match (right l).node with | Nil -> output_string outc "/>" | _ -> output_char outc '>'; loop (right l); output_string outc "' ) | _ -> output_char outc '>'; loop l; output_string outc "' );if print_right then loop r and loop_attributes a = match a.node with | Node(_) -> let value = match (left a).node with | Nil -> "" | _ -> string (left(left a)) in output_char outc ' '; output_string outc (Tag.to_string (tag a)); output_string outc "=\""; output_string outc value; output_char outc '"'; loop_attributes (right a) | _ -> () in loop ~print_right:false t let print_xml_fast outc t = if Tag.to_string (tag t) = "" then print_xml_fast outc (first_child t) else print_xml_fast outc t let traversal t = Tree.traversal t.doc let full_traversal t = let rec aux n = match n.node with | Nil -> () | String i -> () (*ignore(Text.get_text t.doc i) *) | Node(_) -> (* tag_id n; *) aux (first_child n); aux (next_sibling n) in aux t let print_stats _ = () end end IFDEF DEBUG THEN module DEBUGTREE = struct let _timings = Hashtbl.create 107 let time _ref f arg = let t1 = Unix.gettimeofday () in let r = f arg in let t2 = Unix.gettimeofday () in let t = (1000. *.(t2 -. t1)) in let (time,count) = try Hashtbl.find _timings _ref with | Not_found -> 0.,0 in let time = time+. t and count = count + 1 in Hashtbl.replace _timings _ref (time,count);r include XML.Binary let first_child_ doc node = time ("XMLTree.FirstChild()") (XML.Tree.first_child doc) node let next_sibling_ doc node = time ("XMLTree.NextSibling()") (XML.Tree.next_sibling doc) node let is_empty_ text node = time ("TextCollection.IsEmpty()") (XML.Text.is_empty text) node let prev_text_ doc node = time ("XMLTree.PrevText()") (XML.Tree.prev_text doc) node let my_text_ doc node = time ("XMLTree.MyText()") (XML.Tree.my_text doc) node let next_text_ doc node = time ("XMLTree.NextText()") (XML.Tree.next_text doc) node let is_leaf_ doc node = time ("XMLTree.IsLeaf()") (XML.Tree.is_leaf doc ) node let node_xml_id_ doc node = time ("XMLTree.NodeXMLId()") (XML.Tree.node_xml_id doc ) node let text_xml_id_ doc node = time ("XMLTree.TextXMLId()") (XML.Tree.text_xml_id doc ) node let first_child n = let node' = match n.node with | Node (NC t) when is_leaf_ n.doc t -> let txt = my_text_ n.doc t in if is_empty_ n.doc txt then Nil else Node(SC (txt,XML.Tree.nil)) | Node (NC t) -> let fs = first_child_ n.doc t in let txt = prev_text_ n.doc fs in if is_empty_ n.doc txt then norm fs else Node (SC (txt, fs)) | Node(SC (i,_)) -> String i | Nil | String _ -> failwith "first_child" in { n with node = node'} let next_sibling n = let node' = match n.node with | Node (SC (_,ns)) -> norm ns | Node(NC t) -> let ns = next_sibling_ n.doc t in let txt = if XML.Tree.is_nil ns then next_text_ n.doc t else prev_text_ n.doc ns in if is_empty_ n.doc txt then norm ns else Node (SC (txt, ns)) | Nil | String _ -> failwith "next_sibling" in { n with node = node'} let id = function { doc=d; node=Node(NC n)} -> node_xml_id_ d n | { doc=d; node=Node(SC (i,_) )} -> text_xml_id_ d i | _ -> failwith "id" (* Wrapper around critical function *) let string t = time ("TextCollection.GetText()") (string) t let left = first_child let right = next_sibling let tag t = time ("XMLTree.GetTag()") (tag) t let print_stats ppf = let total_time,total_calls = Hashtbl.fold (fun _ (t,c) (tacc,cacc) -> tacc+. t, cacc + c) _timings (0.,0) in Format.fprintf ppf "Timing : Function Name, number of calls,%% of total calls, mean time, total time, %% of total time\n%!"; Hashtbl.iter (fun name (time,count) -> Format.fprintf ppf "%-27s% 8d\t% 4.2f%%\t% 4.6f ms\t% 4.6f ms\t%04.2f%%\n%!" name count (100. *. (float_of_int count)/.(float_of_int total_calls)) (time /. (float_of_int count)) time (100. *. time /. total_time)) _timings; Format.fprintf ppf "-------------------------------------------------------------------\n"; Format.fprintf ppf "%-27s% 8d\t% 4.0f%%\t########## ms\t% 4.6f ms\t% 4.0f%%\n%!" "Total" total_calls 100. total_time 100. let print_xml_fast outc t = let rec loop ?(print_right=true) t = match t.node with | Nil -> () | String (s) -> output_string outc (string t) | Node _ when Tag.equal (tag t) Tag.pcdata -> loop (left t); loop (right t) | Node (_) -> let tg = Tag.to_string (tag t) in let l = left t and r = right t in output_char outc '<'; output_string outc tg; ( match l.node with Nil -> output_string outc "/>" | String _ -> assert false | Node(_) when Tag.equal (tag l) Tag.attribute -> (loop_attributes (left l); match (right l).node with | Nil -> output_string outc "/>" | _ -> output_char outc '>'; loop (right l); output_string outc "' ) | _ -> output_char outc '>'; loop l; output_string outc "' );if print_right then loop r and loop_attributes a = match a.node with | Node(_) -> let value = match (left a).node with | Nil -> "" | _ -> string (left(left a)) in output_char outc ' '; output_string outc (Tag.to_string (tag a)); output_string outc "=\""; output_string outc value; output_char outc '"'; loop_attributes (right a) | _ -> () in loop ~print_right:false t let print_xml_fast outc t = if Tag.to_string (tag t) = "" then print_xml_fast outc (first_child t) else print_xml_fast outc t end module Binary = DEBUGTREE ELSE module Binary = XML.Binary END (* IFDEF DEBUG *)