X-Git-Url: http://git.nguyen.vg/gitweb/?a=blobdiff_plain;f=ata.ml;fp=ata.ml;h=0000000000000000000000000000000000000000;hb=4b52da1a20a4fe031930bb96d2ca46bec06dc529;hp=2a60708b3aa35e0ab5e89a94f021d085c6165ce5;hpb=a223af3254fb51c279cfbccdc18c59484fdca74e;p=SXSI%2Fxpathcomp.git diff --git a/ata.ml b/ata.ml deleted file mode 100644 index 2a60708..0000000 --- a/ata.ml +++ /dev/null @@ -1,1722 +0,0 @@ -INCLUDE "debug.ml" -INCLUDE "utils.ml" -open Camlp4.Struct -type jump_kind = [ `TAG of Tag.t | `CONTAINS of string | `NOTHING ] - -(* Todo : move elsewhere *) -external vb : bool -> int = "%identity" - -module State : -sig - include Sigs.T with type t = int - val make : unit -> t -end = -struct - type t = int - let make = - let id = ref ~-1 in - fun () -> incr id; !id - - let compare = (-) - let equal = (==) - external hash : t -> int = "%identity" - let print fmt x = Format.fprintf fmt "%i" x - let dump fmt x = print fmt x - let check x = - if x < 0 then failwith (Printf.sprintf "State: Assertion %i < 0 failed" x) -end - -module StateSet = -struct - include Ptset.Make ( struct type t = int - type data = t - external hash : t -> int = "%identity" - external uid : t -> Uid.t = "%identity" - external equal : t -> t -> bool = "%eq" - external make : t -> int = "%identity" - external node : t -> int = "%identity" - external with_id : Uid.t -> t = "%identity" - end - ) - let print ppf s = - Format.pp_print_string ppf "{ "; - iter (fun i -> Format.fprintf ppf "%i " i) s; - Format.pp_print_string ppf "}"; - Format.pp_print_flush ppf () -end - -module Formula = -struct - type 'hcons expr = - | False | True - | Or of 'hcons * 'hcons - | And of 'hcons * 'hcons - | Atom of ([ `Left | `Right | `LLeft | `RRight ]*bool*State.t) - - type 'hcons node = { - pos : 'hcons expr; - mutable neg : 'hcons; - st : (StateSet.t*StateSet.t*StateSet.t)*(StateSet.t*StateSet.t*StateSet.t); - size: int; (* Todo check if this is needed *) - } - - external hash_const_variant : [> ] -> int = "%identity" - module rec Node : Hcons.S with type data = Data.t = Hcons.Make (Data) - and Data : Hashtbl.HashedType with type t = Node.t node = - struct - type t = Node.t node - let equal x y = x.size == y.size && - match x.pos,y.pos with - | a,b when a == b -> true - | Or(xf1,xf2),Or(yf1,yf2) - | And(xf1,xf2),And(yf1,yf2) -> (xf1 == yf1) && (xf2 == yf2) - | Atom(d1,p1,s1), Atom(d2,p2,s2) -> d1 == d2 && (p1==p2) && s1 == s2 - | _ -> false - let hash f = - match f.pos with - | False -> 0 - | True -> 1 - | Or (f1,f2) -> HASHINT3(PRIME2,Uid.to_int f1.Node.id, Uid.to_int f2.Node.id) - | And (f1,f2) -> HASHINT3(PRIME3,Uid.to_int f1.Node.id, Uid.to_int f2.Node.id) - | Atom(d,p,s) -> HASHINT4(PRIME4,hash_const_variant d,vb p,s) - end - - type t = Node.t - let hash x = x.Node.key - let uid x = x.Node.id - let equal = Node.equal - let expr f = f.Node.node.pos - let st f = f.Node.node.st - let size f = f.Node.node.size - - let prio f = - match expr f with - | True | False -> 10 - | Atom _ -> 8 - | And _ -> 6 - | Or _ -> 1 - - let rec print ?(parent=false) ppf f = - if parent then Format.fprintf ppf "("; - let _ = match expr f with - | True -> Format.fprintf ppf "T" - | False -> Format.fprintf ppf "F" - | And(f1,f2) -> - print ~parent:(prio f > prio f1) ppf f1; - Format.fprintf ppf " ∧ "; - print ~parent:(prio f > prio f2) ppf f2; - | Or(f1,f2) -> - (print ppf f1); - Format.fprintf ppf " ∨ "; - (print ppf f2); - | Atom(dir,b,s) -> Format.fprintf ppf "%s%s[%i]" - (if b then "" else "¬") - (match dir with - | `Left -> "↓₁" - | `Right -> "↓₂" - | `LLeft -> "⇓₁" - | `RRight -> "⇓₂") s - in - if parent then Format.fprintf ppf ")" - - let print ppf f = print ~parent:false ppf f - - let is_true f = (expr f) == True - let is_false f = (expr f) == False - - - let cons pos neg s1 s2 size1 size2 = - let nnode = Node.make { pos = neg; neg = (Obj.magic 0); st = s2; size = size2 } in - let pnode = Node.make { pos = pos; neg = nnode ; st = s1; size = size1 } - in - (Node.node nnode).neg <- pnode; (* works because the neg field isn't taken into - account for hashing ! *) - pnode,nnode - - let empty_triple = StateSet.empty,StateSet.empty,StateSet.empty - let empty_hex = empty_triple,empty_triple - let true_,false_ = cons True False empty_hex empty_hex 0 0 - let atom_ d p s = - let si = StateSet.singleton s in - let ss = match d with - | `Left -> (si,StateSet.empty,si),empty_triple - | `Right -> empty_triple,(si,StateSet.empty,si) - | `LLeft -> (StateSet.empty,si,si),empty_triple - | `RRight -> empty_triple,(StateSet.empty,si,si) - in fst (cons (Atom(d,p,s)) (Atom(d,not p,s)) ss ss 1 1) - - let not_ f = f.Node.node.neg - let union_hex ((l1,ll1,lll1),(r1,rr1,rrr1)) ((l2,ll2,lll2),(r2,rr2,rrr2)) = - (StateSet.mem_union l1 l2 ,StateSet.mem_union ll1 ll2,StateSet.mem_union lll1 lll2), - (StateSet.mem_union r1 r2 ,StateSet.mem_union rr1 rr2,StateSet.mem_union rrr1 rrr2) - - let merge_states f1 f2 = - let sp = - union_hex (st f1) (st f2) - and sn = - union_hex (st (not_ f1)) (st (not_ f2)) - in - sp,sn - - let order f1 f2 = if uid f1 < uid f2 then f2,f1 else f1,f2 - - let or_ f1 f2 = - (* Tautologies: x|x, x|not(x) *) - - if equal f1 f2 then f1 else - if equal f1 (not_ f2) then true_ else - - (* simplification *) - if is_true f1 || is_true f2 then true_ else - if is_false f1 && is_false f2 then false_ else - if is_false f1 then f2 else - if is_false f2 then f1 else - - (* commutativity of | *) - - let f1,f2 = order f1 f2 in - let psize = (size f1) + (size f2) in - let nsize = (size (not_ f1)) + (size (not_ f2)) in - let sp,sn = merge_states f1 f2 in - fst (cons (Or(f1,f2)) (And(not_ f1,not_ f2)) sp sn psize nsize) - - - let and_ f1 f2 = - - (* Tautologies: x&x, x¬(x) *) - - if equal f1 f2 then f1 else - if equal f1 (not_ f2) then false_ else - - (* simplifications *) - - if is_true f1 && is_true f2 then true_ else - if is_false f1 || is_false f2 then false_ else - if is_true f1 then f2 else - if is_true f2 then f1 else - - (* commutativity of & *) - - let f1,f2 = order f1 f2 in - let psize = (size f1) + (size f2) in - let nsize = (size (not_ f1)) + (size (not_ f2)) in - let sp,sn = merge_states f1 f2 in - fst (cons (And(f1,f2)) (Or(not_ f1,not_ f2)) sp sn psize nsize) - module Infix = struct - let ( +| ) f1 f2 = or_ f1 f2 - let ( *& ) f1 f2 = and_ f1 f2 - let ( *+ ) d s = atom_ d true s - let ( *- ) d s = atom_ d false s - end -end - -module Transition = struct - - type node = State.t*TagSet.t*bool*Formula.t*bool - include Hcons.Make(struct - type t = node - let hash (s,ts,m,f,b) = HASHINT5(s,Uid.to_int (TagSet.uid ts), - Uid.to_int (Formula.uid f), - vb m,vb b) - let equal (s,ts,b,f,m) (s',ts',b',f',m') = - s == s' && ts == ts' && b==b' && m==m' && f == f' - end) - - let print ppf f = let (st,ts,mark,form,b) = node f in - Format.fprintf ppf "(%i, " st; - TagSet.print ppf ts; - Format.fprintf ppf ") %s" (if mark then "⇒" else "→"); - Formula.print ppf form; - Format.fprintf ppf "%s%!" (if b then " (b)" else "") - - - module Infix = struct - let ( ?< ) x = x - let ( >< ) state (l,mark) = state,(l,mark,false) - let ( ><@ ) state (l,mark) = state,(l,mark,true) - let ( >=> ) (state,(label,mark,bur)) form = (state,label,(make (state,label,mark,form,bur))) - end - -end - -module Formlist = struct - include Hlist.Make(Transition) - let print ppf fl = - iter (fun t -> Transition.print ppf t; Format.pp_print_newline ppf ()) fl -end - -module Formlistlist = -struct - include Hlist.Make(Formlist) - let print ppf fll = - iter (fun fl -> Formlist.print ppf fl; Format.pp_print_newline ppf ())fll -end - -type 'a t = { - id : int; - mutable states : StateSet.t; - init : StateSet.t; - starstate : StateSet.t option; - (* Transitions of the Alternating automaton *) - trans : (State.t,(TagSet.t*Transition.t) list) Hashtbl.t; - query_string: string; - } - - -let dump ppf a = - Format.fprintf ppf "Automaton (%i) :\n" a.id; - Format.fprintf ppf "States : "; StateSet.print ppf a.states; - Format.fprintf ppf "\nInitial states : "; StateSet.print ppf a.init; - Format.fprintf ppf "\nAlternating transitions :\n"; - let l = Hashtbl.fold (fun k t acc -> - (List.map (fun (ts,tr) -> (ts,k),Transition.node tr) t) @ acc) a.trans [] in - let l = List.sort (fun ((tsx,x),_) ((tsy,y),_) -> - if y-x == 0 then TagSet.compare tsy tsx else y-x) l in - let maxh,maxt,l_print = - List.fold_left ( - fun (maxh,maxt,l) ((ts,q),(_,_,b,f,_)) -> - let s = - if TagSet.is_finite ts - then "{" ^ (TagSet.fold (fun t a -> a ^ " '" ^ (Tag.to_string t)^"'") ts "") ^" }" - else let cts = TagSet.neg ts in - if TagSet.is_empty cts then "*" else - (TagSet.fold (fun t a -> a ^ " " ^ (Tag.to_string t)) cts "*\\{" - )^ "}" - in - let s = Printf.sprintf "(%s,%i)" s q in - let s_frm = - Formula.print Format.str_formatter f; - Format.flush_str_formatter() - in - (max (String.length s) maxh, max (String.length s_frm) maxt, - (s,(if b then "⇒" else "→"),s_frm)::l)) (0,0,[]) l - in - Format.fprintf ppf "%s\n%!" (String.make (maxt+maxh+3) '_'); - List.iter (fun (s,m,f) -> let s = s ^ (String.make (maxh-(String.length s)) ' ') in - Format.fprintf ppf "%s %s %s\n" s m f) l_print; - Format.fprintf ppf "%s\n%!" (String.make (maxt+maxh+3) '_') - - -module FormTable = Hashtbl.Make(struct - type t = Formula.t*StateSet.t*StateSet.t - let equal (f1,s1,t1) (f2,s2,t2) = - f1 == f2 && s1 == s2 && t1 == t2 - let hash (f,s,t) = - HASHINT3(Uid.to_int (Formula.uid f), - Uid.to_int (StateSet.uid s), - Uid.to_int (StateSet.uid t)) - end) -module F = Formula - -let eval_form_bool = - let h_f = FormTable.create BIG_H_SIZE in - fun f s1 s2 -> - let rec loop f = - match F.expr f with - | F.True -> true,true,true - | F.False -> false,false,false - | F.Atom((`Left|`LLeft),b,q) -> - if b == (StateSet.mem q s1) - then (true,true,false) - else false,false,false - | F.Atom(_,b,q) -> - if b == (StateSet.mem q s2) - then (true,false,true) - else false,false,false - | f' -> - try FormTable.find h_f (f,s1,s2) - with Not_found -> let r = - match f' with - | F.Or(f1,f2) -> - let b1,rl1,rr1 = loop f1 - in - if b1 && rl1 && rr1 then (true,true,true) else - let b2,rl2,rr2 = loop f2 in - let rl1,rr1 = if b1 then rl1,rr1 else false,false - and rl2,rr2 = if b2 then rl2,rr2 else false,false - in (b1 || b2, rl1||rl2,rr1||rr2) - - | F.And(f1,f2) -> - let b1,rl1,rr1 = loop f1 in - if b1 && rl1 && rr1 then (true,true,true) else - if b1 then - let b2,rl2,rr2 = loop f2 in - if b2 then (true,rl1||rl2,rr1||rr2) else (false,false,false) - else (false,false,false) - | _ -> assert false - in FormTable.add h_f (f,s1,s2) r;r - in loop f - - -module FTable = Hashtbl.Make(struct - type t = Tag.t*Formlist.t*StateSet.t*StateSet.t - let equal (tg1,f1,s1,t1) (tg2,f2,s2,t2) = - tg1 == tg2 && f1 == f2 && s1 == s2 && t1 == t2;; - let hash (tg,f,s,t) = - HASHINT4(tg, Uid.to_int (Formlist.uid f), - Uid.to_int (StateSet.uid s), - Uid.to_int (StateSet.uid t)) - end) - - -let h_f = FTable.create BIG_H_SIZE -type merge_conf = NO | ONLY1 | ONLY2 | ONLY12 | MARK | MARK1 | MARK2 | MARK12 -(* 000 001 010 011 100 101 110 111 *) -let eval_formlist tag s1 s2 fl = - let rec loop fl = - try - FTable.find h_f (tag,fl,s1,s2) - with - | Not_found -> - match Formlist.node fl with - | Formlist.Cons(f,fll) -> - let q,ts,mark,f,_ = Transition.node f in - let b,b1,b2 = - if TagSet.mem tag ts then eval_form_bool f s1 s2 else (false,false,false) - in - let (s,(b',b1',b2',amark)) as res = loop fll in - let r = if b then (StateSet.add q s, (b, b1'||b1,b2'||b2,mark||amark)) - else res - in FTable.add h_f (tag,fl,s1,s2) r;r - | Formlist.Nil -> StateSet.empty,(false,false,false,false) - in - let r,conf = loop fl - in - r,(match conf with - | (false,_,_,_) -> NO - | (_,false,false,false) -> NO - | (_,true,false,false) -> ONLY1 - | (_,false,true,false) -> ONLY2 - | (_,true,true,false) -> ONLY12 - | (_,false,false,true) -> MARK - | (_,true,false,true) -> MARK1 - | (_,false,true,true) -> MARK2 - | _ -> MARK12) - -let bool_of_merge conf = - match conf with - | NO -> false,false,false,false - | ONLY1 -> true,true,false,false - | ONLY2 -> true,false,true,false - | ONLY12 -> true,true,true,false - | MARK -> true,false,false,true - | MARK1 -> true,true,false,true - | MARK2 -> true,false,true,true - | MARK12 -> true,true,true,true - - -let tags_of_state a q = - Hashtbl.fold - (fun p l acc -> - if p == q then List.fold_left - (fun acc (ts,t) -> - let _,_,_,_,aux = Transition.node t in - if aux then acc else - TagSet.cup ts acc) acc l - - else acc) a.trans TagSet.empty - - - - let tags a qs = - let ts = Ptset.Int.fold (fun q acc -> TagSet.cup acc (tags_of_state a q)) qs TagSet.empty - in - if TagSet.is_finite ts - then `Positive(TagSet.positive ts) - else `Negative(TagSet.negative ts) - - let inter_text a b = - match b with - | `Positive s -> let r = Ptset.Int.inter a s in (r,Ptset.Int.mem Tag.pcdata r, true) - | `Negative s -> let r = Ptset.Int.diff a s in (r, Ptset.Int.mem Tag.pcdata r, false) - - - module type ResultSet = - sig - type t - type elt = [` Tree ] Tree.node - val empty : t - val cons : elt -> t -> t - val concat : t -> t -> t - val iter : ( elt -> unit) -> t -> unit - val fold : ( elt -> 'a -> 'a) -> t -> 'a -> 'a - val map : ( elt -> elt) -> t -> t - val length : t -> int - val merge : merge_conf -> elt -> t -> t -> t - val mk_quick_tag_loop : (elt -> elt -> 'a*t array) -> 'a -> int -> Tree.t -> Tag.t -> (elt -> elt -> 'a*t array) - val mk_quick_star_loop : (elt -> elt -> 'a*t array) -> 'a -> int -> Tree.t -> (elt -> elt -> 'a*t array) - - end - - module Integer : ResultSet = - struct - type t = int - type elt = [`Tree] Tree.node - - let empty = 0 - let cons _ x = x+1 - let concat x y = x + y - let iter _ _ = failwith "iter not implemented" - let fold _ _ _ = failwith "fold not implemented" - let map _ _ = failwith "map not implemented" - let length x = x - let merge2 conf t res1 res2 = - let rb,rb1,rb2,mark = conf in - if rb then - let res1 = if rb1 then res1 else 0 - and res2 = if rb2 then res2 else 0 - in - if mark then 1+res1+res2 - else res1+res2 - else 0 - let merge conf t res1 res2 = - match conf with - | NO -> 0 - | ONLY1 -> res1 - | ONLY2 -> res2 - | ONLY12 -> res1+res2 - | MARK -> 1 - | MARK1 -> res1+1 - | MARK2 -> res2+1 - | MARK12 -> res1+res2+1 - let merge conf _ res1 res2 = - let conf = Obj.magic conf in - (conf lsr 2) + ((conf land 0b10) lsr 1)*res2 + (conf land 0b1)*res1 - - - let mk_quick_tag_loop _ sl ss tree tag = (); - fun t ctx -> - (sl, Array.make ss (Tree.subtree_tags tree tag t)) - let mk_quick_star_loop _ sl ss tree = (); - fun t ctx -> - (sl, Array.make ss (Tree.subtree_elements tree t)) - - end - - module IdSet : ResultSet= - struct - type elt = [`Tree] Tree.node - type node = Nil - | Cons of elt * node - | Concat of node*node - - and t = { node : node; - length : int } - - let empty = { node = Nil; length = 0 } - - let cons e t = { node = Cons(e,t.node); length = t.length+1 } - let concat t1 t2 = { node = Concat(t1.node,t2.node); length = t1.length+t2.length } - let append e t = { node = Concat(t.node,Cons(e,Nil)); length = t.length+1 } - - let fold f l acc = - let rec loop acc t = match t with - | Nil -> acc - | Cons (e,t) -> loop (f e acc) t - | Concat (t1,t2) -> loop (loop acc t1) t2 - in - loop acc l.node - - let length l = l.length - - - let iter f l = - let rec loop = function - | Nil -> () - | Cons (e,t) -> f e; loop t - | Concat(t1,t2) -> loop t1;loop t2 - in loop l.node - - let map f l = - let rec loop = function - | Nil -> Nil - | Cons(e,t) -> Cons(f e, loop t) - | Concat(t1,t2) -> Concat(loop t1,loop t2) - in - { l with node = loop l.node } - - let merge conf t res1 res2 = - match conf with - NO -> empty - | MARK -> cons t empty - | ONLY1 -> res1 - | ONLY2 -> res2 - | ONLY12 -> { node = (Concat(res1.node,res2.node)); - length = res1.length + res2.length ;} - | MARK12 -> { node = Cons(t,(Concat(res1.node,res2.node))); - length = res1.length + res2.length + 1;} - | MARK1 -> { node = Cons(t,res1.node); - length = res1.length + 1;} - | MARK2 -> { node = Cons(t,res2.node); - length = res2.length + 1;} - - let mk_quick_tag_loop f _ _ _ _ = f - let mk_quick_star_loop f _ _ _ = f - end - module GResult(Doc : sig val doc : Tree.t end) = struct - type bits - type elt = [` Tree] Tree.node - external create_empty : int -> bits = "caml_result_set_create" "noalloc" - external set : bits -> int -> unit = "caml_result_set_set" "noalloc" - external next : bits -> int -> int = "caml_result_set_next" "noalloc" - external count : bits -> int = "caml_result_set_count" "noalloc" - external clear : bits -> elt -> elt -> unit = "caml_result_set_clear" "noalloc" - - external set_tag_bits : bits -> Tag.t -> Tree.t -> elt -> elt = "caml_set_tag_bits" "noalloc" - type t = - { segments : elt list; - bits : bits; - } - - let ebits = - let size = (Tree.subtree_size Doc.doc Tree.root) in - create_empty (size*2+1) - - let empty = { segments = []; - bits = ebits } - - let cons e t = - let rec loop l = match l with - | [] -> { bits = (set t.bits (Obj.magic e);t.bits); - segments = [ e ] } - | p::r -> - if Tree.is_binary_ancestor Doc.doc e p then - loop r - else - { bits = (set t.bits (Obj.magic e);t.bits); - segments = e::l } - in - loop t.segments - - let concat t1 t2 = - if t2.segments == [] then t1 - else - if t1.segments == [] then t2 - else - let h2 = List.hd t2.segments in - let rec loop l = match l with - | [] -> t2.segments - | p::r -> - if Tree.is_binary_ancestor Doc.doc p h2 then - l - else - p::(loop r) - in - { bits = t1.bits; - segments = loop t1.segments - } - - let iter f t = - let rec loop i = - if i == -1 then () - else (f ((Obj.magic i):elt);loop (next t.bits i)) - in loop (next t.bits 0) - - let fold f t acc = - let rec loop i acc = - if i == -1 then acc - else loop (next t.bits i) (f ((Obj.magic i):elt) acc) - in loop (next t.bits 0) acc - - let map _ _ = failwith "noop" - (*let length t = let cpt = ref 0 in - iter (fun _ -> incr cpt) t; !cpt *) - let length t = count t.bits - - let clear_bits t = - let rec loop l = match l with - [] -> () - | idx::ll -> - clear t.bits idx (Tree.closing Doc.doc idx); loop ll - in - loop t.segments;empty - - let merge (rb,rb1,rb2,mark) elt t1 t2 = - if rb then -(* let _ = Printf.eprintf "Lenght before merging is %i %i\n" - (List.length t1.segments) (List.length t2.segments) - in *) - match t1.segments,t2.segments with - [],[] -> if mark then cons elt empty else empty - | [_],[] when rb1 -> if mark then cons elt t1 else t1 - | [], [_] when rb2 -> if mark then cons elt t2 else t2 - | [_],[_] when rb1 && rb2 -> if mark then cons elt empty else - concat t1 t2 - | _ -> - let t1 = if rb1 then t1 else clear_bits t1 - and t2 = if rb2 then t2 else clear_bits t2 - in - (if mark then cons elt (concat t1 t2) - else concat t1 t2) - else - let _ = clear_bits t1 in - clear_bits t2 - - let merge conf t t1 t2 = - match t1.segments,t2.segments,conf with - | _,_,NO -> let _ = clear_bits t1 in clear_bits t2 - | [],[],(MARK1|MARK2|MARK12|MARK) -> cons t empty - | [],[],_ -> empty - | [_],[],(ONLY1|ONLY12) -> t1 - | [_],[],(MARK1|MARK12) -> cons t t1 - | [],[_],(ONLY2|ONLY12) -> t2 - | [],[_],(MARK2|MARK12) -> cons t t2 - | [_],[_],ONLY12 -> concat t1 t2 - | [_],[_],MARK12 -> cons t empty - | _,_,MARK -> let _ = clear_bits t2 in cons t (clear_bits t1) - | _,_,ONLY1 -> let _ = clear_bits t2 in t1 - | _,_,ONLY2 -> let _ = clear_bits t1 in t2 - | _,_,ONLY12 -> concat t1 t2 - | _,_,MARK1 -> let _ = clear_bits t2 in cons t t1 - | _,_,MARK2 -> let _ = clear_bits t1 in cons t t2 - | _,_,MARK12 -> cons t (concat t1 t2) - - let mk_quick_tag_loop _ sl ss tree tag = (); - fun t _ -> - let res = empty in - let first = set_tag_bits empty.bits tag tree t in - let res = - if first == Tree.nil then res else - cons first res - in - (sl, Array.make ss res) - - let mk_quick_star_loop f _ _ _ = f - end - module Run (RS : ResultSet) = - struct - - module SList = struct - include Hlist.Make (StateSet) - let print ppf l = - Format.fprintf ppf "[ "; - begin - match l.Node.node with - | Nil -> () - | Cons(s,ll) -> - StateSet.print ppf s; - iter (fun s -> Format.fprintf ppf "; "; - StateSet.print ppf s) ll - end; - Format.fprintf ppf "]%!" - - - end - - -IFDEF DEBUG -THEN - module IntSet = Set.Make(struct type t = int let compare = (-) end) -INCLUDE "html_trace.ml" - -END - module Trace = - struct - module HFname = Hashtbl.Make (struct - type t = Obj.t - let hash = Hashtbl.hash - let equal = (==) - end) - - let h_fname = HFname.create 401 - - let register_funname f s = - HFname.add h_fname (Obj.repr f) s - let get_funname f = try HFname.find h_fname (Obj.repr f) with _ -> "[anon_fun]" - - - - let mk_fun f s = register_funname f s;f - let mk_app_fun f arg s = - let g = f arg in - register_funname g ((get_funname f) ^ " " ^ s); g - let mk_app_fun2 f arg1 arg2 s = - let g = f arg1 arg2 in - register_funname g ((get_funname f) ^ " " ^ s); g - - end - - let string_of_ts tags = (Ptset.Int.fold (fun t a -> a ^ " " ^ (Tag.to_string t) ) tags "{")^ " }" - - - module Algebra = - struct - type jump = [ `NIL | `ANY |`ANYNOTEXT | `JUMP ] - type t = jump*Ptset.Int.t*Ptset.Int.t - let jts = function - | `JUMP -> "JUMP" - | `NIL -> "NIL" - | `ANY -> "ANY" - | `ANYNOTEXT -> "ANYNOTEXT" - let merge_jump (j1,c1,l1) (j2,c2,l2) = - match j1,j2 with - | _,`NIL -> (j1,c1,l1) - | `NIL,_ -> (j2,c2,l2) - | `ANY,_ -> (`ANY,Ptset.Int.empty,Ptset.Int.empty) - | _,`ANY -> (`ANY,Ptset.Int.empty,Ptset.Int.empty) - | `ANYNOTEXT,_ -> - if Ptset.Int.mem Tag.pcdata (Ptset.Int.union c2 l2) then - (`ANY,Ptset.Int.empty,Ptset.Int.empty) - else - (`ANYNOTEXT,Ptset.Int.empty,Ptset.Int.empty) - | _,`ANYNOTEXT -> - if Ptset.Int.mem Tag.pcdata (Ptset.Int.union c1 l1) then - (`ANY,Ptset.Int.empty,Ptset.Int.empty) - else - (`ANYNOTEXT,Ptset.Int.empty,Ptset.Int.empty) - | `JUMP,`JUMP -> (`JUMP, Ptset.Int.union c1 c2,Ptset.Int.union l1 l2) - - let merge_jump_list = function - | [] -> `NIL,Ptset.Int.empty,Ptset.Int.empty - | p::r -> - List.fold_left (merge_jump) p r - - let labels a s = - Hashtbl.fold - ( - fun q l acc -> - if (q == s) - then - - (List.fold_left - (fun acc (ts,f) -> - let _,_,_,_,bur = Transition.node f in - if bur then acc else TagSet.cup acc ts) - acc l) - else acc ) a.trans TagSet.empty - exception Found - - let is_rec a s access = - List.exists - (fun (_,t) -> let _,_,_,f,_ = Transition.node t in - StateSet.mem s ((fun (_,_,x) -> x) (access (Formula.st f)))) (Hashtbl.find a.trans s) - - let is_final_marking a s = - List.exists (fun (_,t) -> let _,_,m,f,_ = Transition.node t in m&& (Formula.is_true f)) - (Hashtbl.find a.trans s) - - - let decide a c_label l_label dir_states dir = - - let l = StateSet.fold - (fun s l -> - let s_rec = is_rec a s (if dir then fst else snd) in - let s_rec = if dir then s_rec else - (* right move *) - is_rec a s fst - in - let s_lab = labels a s in - let jmp,cc,ll = - if (not (TagSet.is_finite s_lab)) then - if TagSet.mem Tag.pcdata s_lab then (`ANY,Ptset.Int.empty,Ptset.Int.empty) - else (`ANYNOTEXT,Ptset.Int.empty,Ptset.Int.empty) - else - if s_rec - then (`JUMP,Ptset.Int.empty, TagSet.positive - (TagSet.cap (TagSet.inj_positive l_label) s_lab)) - else (`JUMP,TagSet.positive - (TagSet.cap (TagSet.inj_positive c_label) s_lab), - Ptset.Int.empty ) - in - (if jmp != `ANY - && jmp != `ANYNOTEXT - && Ptset.Int.is_empty cc - && Ptset.Int.is_empty ll - then (`NIL,Ptset.Int.empty,Ptset.Int.empty) - else (jmp,cc,ll))::l) dir_states [] - in merge_jump_list l - - - end - - - - let choose_jump (d,cl,ll) f_nil f_t1 f_s1 f_tn f_sn f_s1n f_notext f_maytext = - match d with - | `NIL -> (`NIL,f_nil) - | `ANYNOTEXT -> `ANY,f_notext - | `ANY -> `ANY,f_maytext - | `JUMP -> - if Ptset.Int.is_empty cl then - if Ptset.Int.is_singleton ll then - let tag = Ptset.Int.choose ll in - (`TAG(tag),Trace.mk_app_fun f_tn tag (Tag.to_string tag)) - else - (`MANY(ll),Trace.mk_app_fun f_sn ll (string_of_ts ll)) - else if Ptset.Int.is_empty ll then - if Ptset.Int.is_singleton cl then - let tag = Ptset.Int.choose cl in - (`TAG(tag),Trace.mk_app_fun f_t1 tag (Tag.to_string tag)) - else - (`MANY(cl),Trace.mk_app_fun f_s1 cl (string_of_ts cl)) - else - (`ANY,Trace.mk_app_fun2 f_s1n cl ll ((string_of_ts cl) ^ " " ^ (string_of_ts ll))) - - | _ -> assert false - - let choose_jump_down tree d = - choose_jump d - (Trace.mk_fun (fun _ -> Tree.nil) "Tree.mk_nil") - (Trace.mk_fun (Tree.tagged_child tree) "Tree.tagged_child") - (Trace.mk_fun (Tree.select_child tree) "Tree.select_child") - (Trace.mk_fun (Tree.tagged_descendant tree) "Tree.tagged_desc") - (Trace.mk_fun (Tree.select_descendant tree) "Tree.select_desc") - (Trace.mk_fun (fun _ _ -> Tree.first_child tree) "[FIRSTCHILD]Tree.select_child_desc") - (Trace.mk_fun (Tree.first_element tree) "Tree.first_element") - (Trace.mk_fun (Tree.first_child tree) "Tree.first_child") - - let choose_jump_next tree d = - choose_jump d - (Trace.mk_fun (fun _ _ -> Tree.nil) "Tree.mk_nil2") - (Trace.mk_fun (Tree.tagged_following_sibling_below tree) "Tree.tagged_sibling_ctx") - (Trace.mk_fun (Tree.select_following_sibling_below tree) "Tree.select_sibling_ctx") - (Trace.mk_fun (Tree.tagged_following_below tree) "Tree.tagged_foll_ctx") - (Trace.mk_fun (Tree.select_following_below tree) "Tree.select_foll_ctx") - (Trace.mk_fun (fun _ _ -> Tree.next_sibling_below tree) "[NEXTSIBLING]Tree.select_sibling_foll_ctx") - (Trace.mk_fun (Tree.next_element_below tree) "Tree.next_element_ctx") - (Trace.mk_fun (Tree.next_sibling_below tree) "Tree.node_sibling_ctx") - - - - - module CodeCache = - struct - let get = Array.unsafe_get - let set = Array.set - - type fun_tree = [`Tree] Tree.node -> [`Tree] Tree.node -> SList.t -> Tag.t -> bool -> SList.t*RS.t array - type t = fun_tree array array - - let dummy = fun _ _ _ _ _ -> failwith "Uninitializd CodeCache" - let default_line = Array.create 1024 dummy (* 1024 = max_tag *) - let create n = Array.create n default_line - let init f = - for i = 0 to (Array.length default_line) - 1 - do - default_line.(i) <- f - done - - let get_fun h slist tag = - get (get h (Uid.to_int slist.SList.Node.id)) tag - - let set_fun (h : t) slist tag (data : fun_tree) = - let tab = get h (Uid.to_int slist.SList.Node.id) in - let line = if tab == default_line then - let x = Array.copy tab in - (set h (Uid.to_int slist.SList.Node.id) x;x) - else tab - in - set line tag data - - end - - let empty_size n = - let rec loop acc = function 0 -> acc - | n -> loop (SList.cons StateSet.empty acc) (n-1) - in loop SList.nil n - - - module Fold2Res = struct - let get = Array.unsafe_get - let set = Array.set - external field1 : Obj.t -> int = "%field1" - type t = Obj.t array array array array - let dummy_val = Obj.repr ((),2,()) - - let default_line3 = Array.create BIG_A_SIZE dummy_val - let default_line2 = Array.create BIG_A_SIZE default_line3 - let default_line1 = Array.create BIG_A_SIZE default_line2 - - let create n = Array.create n default_line1 - - let find h tag fl s1 s2 : SList.t*bool*(merge_conf array) = - let l1 = get h tag in - let l2 = get l1 (Uid.to_int fl.Formlistlist.Node.id) in - let l3 = get l2 (Uid.to_int s1.SList.Node.id) in - Obj.magic (get l3 (Uid.to_int s2.SList.Node.id)) - - let is_valid b = (Obj.magic b) != 2 - let get_replace tab idx default = - let e = get tab idx in - if e == default then - let ne = Array.copy e in (set tab idx ne;ne) - else e - - let add h tag fl s1 s2 (data: SList.t*bool*(merge_conf array)) = - let l1 = get_replace h tag default_line1 in - let l2 = get_replace l1 (Uid.to_int fl.Formlistlist.Node.id) default_line2 in - let l3 = get_replace l2 (Uid.to_int s1.SList.Node.id) default_line3 in - set l3 (Uid.to_int s2.SList.Node.id) (Obj.repr data) - end - - - - - let top_down ?(noright=false) a tree t slist ctx slot_size td_trans h_fold2= - let pempty = empty_size slot_size in - let rempty = Array.make slot_size RS.empty in - (* evaluation starts from the right so we put sl1,res1 at the end *) - let eval_fold2_slist fll t tag (sl2,res2) (sl1,res1) = - let res = Array.copy rempty in - let r,b,btab = Fold2Res.find h_fold2 tag fll sl1 sl2 in - if Fold2Res.is_valid b then - begin - if b then for i=0 to slot_size - 1 do - res.(0) <- RS.merge btab.(0) t res1.(0) res2.(0); - done; - r,res - end - else - begin - let btab = Array.make slot_size NO in - let rec fold l1 l2 fll i aq ab = - match fll.Formlistlist.Node.node, - l1.SList.Node.node, - l2.SList.Node.node - with - | Formlistlist.Cons(fl,fll), - SList.Cons(s1,ll1), - SList.Cons(s2,ll2) -> - let r',conf = eval_formlist tag s1 s2 fl in - let _ = btab.(i) <- conf - in - fold ll1 ll2 fll (i+1) (SList.cons r' aq) ((conf!=NO)||ab) - | _ -> aq,ab - in - let r,b = fold sl1 sl2 fll 0 SList.nil false in - Fold2Res.add h_fold2 tag fll sl1 sl2 (r,b,btab); - if b then for i=0 to slot_size - 1 do - res.(i) <- RS.merge btab.(i) t res1.(i) res2.(i); - done; - r,res; - end - in - - let null_result = (pempty,Array.copy rempty) in - let empty_res = null_result in - - let rec loop t ctx slist _ = - if t == Tree.nil then null_result else - let tag = Tree.tag tree t in - (CodeCache.get_fun td_trans slist tag) t ctx slist tag false - (* get_trans t ctx slist tag false - (CodeCache.get_opcode td_trans slist tag) - *) - and loop_tag t ctx slist tag = - if t == Tree.nil then null_result else - (CodeCache.get_fun td_trans slist tag) t ctx slist tag false - (* get_trans t ctx slist tag false - (CodeCache.get_opcode td_trans slist tag) *) - - and loop_no_right t ctx slist _ = - if t == Tree.nil then null_result else - let tag = Tree.tag tree t in - (CodeCache.get_fun td_trans slist tag) t ctx slist tag true - (* get_trans t ctx slist tag true - (CodeCache.get_opcode td_trans slist tag) *) - (* - and get_trans t ctx slist tag noright opcode = - match opcode with - | OpCode.K0 fll -> - eval_fold2_slist fll t tag empty_res empty_res - - | OpCode.K1 (fll,first,llist,tag1) -> - eval_fold2_slist fll t tag empty_res - (loop_tag (first t) t llist tag1) - - | OpCode.K2 (fll,first,llist) -> - eval_fold2_slist fll t tag empty_res - (loop (first t) t llist) - - | OpCode.K3 (fll,next,rlist,tag2) -> - eval_fold2_slist fll t tag - (loop_tag (next t ctx) ctx rlist tag2) - empty_res - | OpCode.K4 (fll,next,rlist) -> - eval_fold2_slist fll t tag - (loop (next t ctx) ctx rlist) - empty_res - - | OpCode.K5 (fll,next,rlist,tag2,first,llist,tag1) -> - eval_fold2_slist fll t tag - (loop_tag (next t ctx) ctx rlist tag2) - (loop_tag (first t) t llist tag1) - - | OpCode.K6 (fll,next,rlist,first,llist,tag1) -> - eval_fold2_slist fll t tag - (loop (next t ctx) ctx rlist) - (loop_tag (first t) t llist tag1) - - | OpCode.K7 (fll,next,rlist,tag2,first,llist) -> - eval_fold2_slist fll t tag - (loop_tag (next t ctx) ctx rlist tag2) - (loop (first t) t llist) - - | OpCode.K8 (fll,next,rlist,first,llist) -> - eval_fold2_slist fll t tag - (loop (next t ctx) ctx rlist) - (loop (first t) t llist) - - | OpCode.KDefault _ -> - mk_trans t ctx tag slist noright - *) - and mk_trans t ctx slist tag noright = - let fl_list,llist,rlist,ca,da,sa,fa = - SList.fold - (fun set (fll_acc,lllacc,rllacc,ca,da,sa,fa) -> (* For each set *) - let fl,ll,rr,ca,da,sa,fa = - StateSet.fold - (fun q acc -> - List.fold_left - (fun ((fl_acc,ll_acc,rl_acc,c_acc,d_acc,s_acc,f_acc) as acc) - (ts,t) -> - if (TagSet.mem tag ts) - then - let _,_,_,f,_ = t.Transition.node in - let (child,desc,below),(sibl,foll,after) = Formula.st f in - (Formlist.cons t fl_acc, - StateSet.union ll_acc below, - StateSet.union rl_acc after, - StateSet.union child c_acc, - StateSet.union desc d_acc, - StateSet.union sibl s_acc, - StateSet.union foll f_acc) - else acc ) acc ( - try Hashtbl.find a.trans q - with - Not_found -> Printf.eprintf "Looking for state %i, doesn't exist!!!\n%!" - q;[] - ) - - ) set (Formlist.nil,StateSet.empty,StateSet.empty,ca,da,sa,fa) - in (Formlistlist.cons fl fll_acc), (SList.cons ll lllacc), (SList.cons rr rllacc),ca,da,sa,fa) - slist (Formlistlist.nil,SList.nil,SList.nil,StateSet.empty,StateSet.empty,StateSet.empty,StateSet.empty) - in - (* Logic to chose the first and next function *) - let tags_child,tags_below,tags_siblings,tags_after = Tree.tags tree tag in - let d_f = Algebra.decide a tags_child tags_below (StateSet.union ca da) true in - let d_n = Algebra.decide a tags_siblings tags_after (StateSet.union sa fa) false in - let f_kind,first = choose_jump_down tree d_f - and n_kind,next = if noright then (`NIL, fun _ _ -> Tree.nil ) - else choose_jump_next tree d_n in - let empty_res = null_result in - let fll = fl_list in - let cont = - match f_kind,n_kind with - | `NIL,`NIL -> (*OpCode.K0(fl_list) *) - fun t _ _ tag _ -> eval_fold2_slist fll t tag empty_res empty_res - - | _,`NIL -> ( - match f_kind with - |`TAG(tag1) -> (*OpCode.K1(fl_list,first,llist,tag1) *) - fun t _ _ tag _ -> eval_fold2_slist fll t tag empty_res - (loop_tag (first t) t llist tag1) - | _ -> (* OpCode.K2(fl_list,first,llist) *) - fun t _ _ tag _ -> eval_fold2_slist fll t tag empty_res - (loop (first t) t llist tag) - ) - | `NIL,_ -> ( - match n_kind with - |`TAG(tag2) -> (*OpCode.K3(fl_list,next,rlist,tag2) *) - fun t ctx _ tag _ -> - eval_fold2_slist fll t tag - (loop_tag (next t ctx) ctx rlist tag2) - empty_res - - | _ -> (*OpCode.K4(fl_list,next,rlist) *) - fun t ctx _ tag _ -> - eval_fold2_slist fll t tag - (loop (next t ctx) ctx rlist tag) - empty_res - - ) - - | `TAG(tag1),`TAG(tag2) -> (*OpCode.K5(fl_list,next,rlist,tag2,first,llist,tag1) *) - fun t ctx _ tag _ -> - eval_fold2_slist fll t tag - (loop_tag (next t ctx) ctx rlist tag2) - (loop_tag (first t) t llist tag1) - - | `TAG(tag1),`ANY -> (* OpCode.K6(fl_list,next,rlist,first,llist,tag1) *) - fun t ctx _ tag _ -> - eval_fold2_slist fll t tag - (loop (next t ctx) ctx rlist tag) - (loop_tag (first t) t llist tag1) - - | `ANY,`TAG(tag2) -> (* OpCode.K7(fl_list,next,rlist,tag2,first,llist) *) - fun t ctx _ tag _ -> - eval_fold2_slist fll t tag - (loop_tag (next t ctx) ctx rlist tag2) - (loop (first t) t llist tag) - - - | _,_ -> (*OpCode.K8(fl_list,next,rlist,first,llist) *) - (*if SList.equal slist rlist && SList.equal slist llist - then - let rec loop t ctx = - if t == Tree.nil then empty_res else - let r1 = loop (first t) t - and r2 = loop (next t ctx) ctx - in - eval_fold2_slist fl_list t (Tree.tag tree t) r2 r1 - in loop - else *) - fun t ctx _ tag _ -> - eval_fold2_slist fll t tag - (loop (next t ctx) ctx rlist tag) - (loop (first t) t llist tag) - - - - in - CodeCache.set_fun td_trans slist tag cont; - cont t ctx slist tag noright - in - let _ = CodeCache.init mk_trans in - (if noright then loop_no_right else loop) t ctx slist Tag.dummy - - - let run_top_down a tree = - let init = SList.cons a.init SList.nil in - let _,res = top_down a tree Tree.root init Tree.root 1 (CodeCache.create BIG_A_SIZE) (Fold2Res.create 1024) - in - D_IGNORE_( - output_trace a tree "trace.html" - (RS.fold (fun t a -> IntSet.add (Tree.id tree t) a) res.(0) IntSet.empty), - res.(0)) - ;; - - - - - - module Code3Cache = - struct - let get = Array.get - let set = Array.set - let realloc a new_size default = - let old_size = Array.length a in - if old_size == new_size then a - else if new_size == 0 then [||] - else let na = Array.create new_size default in - Array.blit a 0 na 0 old_size;na - - type fun_tree = [`Tree] Tree.node -> [`Tree] Tree.node -> StateSet.t -> Tag.t -> StateSet.t*RS.t - and t = { mutable table : fun_tree array array; - mutable default_elm : fun_tree; - mutable default_line : fun_tree array; - (* statistics *) - mutable access : int; - mutable miss : int; - } - - - let create () = - { table = [||]; - default_elm = (fun _ _ _ _ -> failwith "Uninitialized Code3Cache.t structure\n"); - default_line = [||]; - access = 0; - miss = 0 } - - let init h f = - let default_line = Array.create SMALL_A_SIZE f in - begin - h.table <- Array.create SMALL_A_SIZE default_line; - h.default_elm <- f; - h.default_line <- default_line; - h.access <- 0; - h.miss <- 0 - end - - let next_power_of_2 n = - let rec loop i acc = - if acc == 0 then i - else loop (i+1) (acc lsr 1) - in - 1 lsl (loop 0 n) - - let get_fun h slist tag = - let _ = h.access <- h.access + 1 in - let idx = Uid.to_int slist.StateSet.Node.id in - let line = - if idx >= Array.length h.table then - let new_tab = realloc h.table (next_power_of_2 idx) h.default_line in - let _ = h.miss <- h.miss + 1; h.table <- new_tab in h.default_line - else Array.unsafe_get h.table idx - in - if tag >= Array.length line then - let new_line = realloc line (next_power_of_2 tag) h.default_elm in - let _ = h.miss <- h.miss + 1; Array.unsafe_set h.table idx new_line in h.default_elm - else Array.unsafe_get line tag - - let set_fun (h : t) slist tag (data : fun_tree) = - let idx = Uid.to_int slist.StateSet.Node.id in - let line = - if idx >= Array.length h.table then - let new_tab = realloc h.table (next_power_of_2 idx) h.default_line in - let _ = h.table <- new_tab in h.default_line - else Array.unsafe_get h.table idx - in - let line = if line == h.default_line then - let l = Array.copy line in Array.unsafe_set h.table idx l;l - else line in - let line = if tag >= Array.length line then - let new_line = realloc line (next_power_of_2 tag) h.default_elm in - let _ = Array.unsafe_set h.table idx new_line in new_line - else line - in - Array.unsafe_set line tag data - - - let dump h = Array.iteri - (fun id line -> if line != h.default_line then - begin - StateSet.print Format.err_formatter (StateSet.with_id (Uid.of_int id)); - Format.fprintf Format.err_formatter " -> "; - Array.iteri (fun tag clos -> - if clos != h.default_elm then - Format.fprintf Format.err_formatter " (%s,%s) " - (Tag.to_string tag) (Trace.get_funname clos)) line; - Format.fprintf Format.err_formatter "\n%!" - end - ) h.table; - Format.fprintf Format.err_formatter "Cache hits: %i, Cache misses: %i, ratio = %f\n%!" - h.access h.miss ((float_of_int h.miss)/. (float_of_int h.access)); - Format.fprintf Format.err_formatter "Size: %i kb\n%!" - (((2+(Array.length h.default_line)+ - (Array.fold_left (fun acc l ->acc + (if l == h.default_line then 0 else Array.length l)) - (Array.length h.table) h.table)) * Sys.word_size) / 1024) - - end - - module StaticEnv = - struct - - type t = { stack : Obj.t array; - mutable top : int; } - - let create () = { stack = Array.create BIG_A_SIZE (Obj.repr 0); top = 0 } - let add t e = - let _ = if t.top >= Array.length t.stack then failwith "Static Env overflow" in - let i = t.top in Array.unsafe_set t.stack i e; t.top <- i + 1; i - - let get t i :'a = Obj.magic (Array.unsafe_get t.stack i) - end - - module Fold3Res = struct - let get = Array.unsafe_get - let set = Array.set - external field1 : Obj.t -> int = "%field1" - type t = Obj.t array array array array - let dummy_val = Obj.repr ((),2,()) - - let default_line3 = Array.create 1024 dummy_val - let default_line2 = Array.create BIG_A_SIZE default_line3 - let default_line1 = Array.create BIG_A_SIZE default_line2 - - let create n = Array.create n default_line1 - - let find h tag fl s1 s2 : StateSet.t*bool*merge_conf = - let l1 = get h (Uid.to_int fl.Formlist.Node.id) in - let l2 = get l1 (Uid.to_int s1.StateSet.Node.id) in - let l3 = get l2 (Uid.to_int s2.StateSet.Node.id) in - Obj.magic (get l3 tag) - - let is_valid b = b != (Obj.magic dummy_val) - let get_replace tab idx default = - let e = get tab idx in - if e == default then - let ne = Array.copy e in (set tab idx ne;ne) - else e - - let add h tag fl s1 s2 (data: StateSet.t*bool*merge_conf) = - let l1 = get_replace h (Uid.to_int fl.Formlist.Node.id) default_line1 in - let l2 = get_replace l1 (Uid.to_int s1.StateSet.Node.id) default_line2 in - let l3 = get_replace l2 (Uid.to_int s2.StateSet.Node.id) default_line3 in - set l3 tag (Obj.repr data) - end - - - let empty_res = StateSet.empty,RS.empty - - let top_down1 a tree t slist ctx td_trans h_fold2 = - (* evaluation starts from the right so we put sl1,res1 at the end *) - let env = StaticEnv.create () in - let slist_reg = ref StateSet.empty in - let eval_fold2_slist fll t tag (sl2,res2) (sl1,res1) = - let data = Fold3Res.find h_fold2 tag fll sl1 sl2 in - if Fold3Res.is_valid data then - let r,b,conf = data in - (r,if b then RS.merge conf t res1 res2 else RS.empty) - else - let r,conf = eval_formlist tag sl1 sl2 fll in - let b = conf <> NO in - (Fold3Res.add h_fold2 tag fll sl1 sl2 (r,b,conf); - (r, if b then RS.merge conf t res1 res2 else RS.empty)) - - in - let loop t ctx slist _ = - if t == Tree.nil then empty_res else - let tag = Tree.tag tree t in - (Code3Cache.get_fun td_trans slist tag) t ctx slist tag - - in - let loop_tag t ctx slist tag = - if t == Tree.nil then empty_res else - (Code3Cache.get_fun td_trans slist tag) t ctx slist tag - - in - let mk_trans t ctx slist tag = - let fl_list,llist,rlist,ca,da,sa,fa = - StateSet.fold - (fun q acc -> - List.fold_left - (fun ((fl_acc,ll_acc,rl_acc,c_acc,d_acc,s_acc,f_acc) as acc) - (ts,t) -> - if (TagSet.mem tag ts) - then - let _,_,_,f,_ = t.Transition.node in - let (child,desc,below),(sibl,foll,after) = Formula.st f in - (Formlist.cons t fl_acc, - StateSet.union ll_acc below, - StateSet.union rl_acc after, - StateSet.union child c_acc, - StateSet.union desc d_acc, - StateSet.union sibl s_acc, - StateSet.union foll f_acc) - else acc ) acc ( - try Hashtbl.find a.trans q - with - Not_found -> Printf.eprintf "Looking for state %i, doesn't exist!!!\n%!" - q;[] - ) - - ) slist (Formlist.nil,StateSet.empty,StateSet.empty, - StateSet.empty,StateSet.empty,StateSet.empty,StateSet.empty) - - in - (* Logic to chose the first and next function *) - let tags_child,tags_below,tags_siblings,tags_after = Tree.tags tree tag in - let d_f = Algebra.decide a tags_child tags_below (StateSet.union ca da) true in - let d_n = Algebra.decide a tags_siblings tags_after (StateSet.union sa fa) false in - let f_kind,first = choose_jump_down tree d_f - and n_kind,next = choose_jump_next tree d_n in - (*let f_kind, first = `ANY, (Tree.first_element tree) - and n_kind, next = `ANY, (Tree.next_element_below tree) in *) - let cont = - match f_kind,n_kind with - | `NIL,`NIL -> - fun t _ _ tag -> eval_fold2_slist fl_list t tag empty_res empty_res - - | _,`NIL -> ( - match f_kind with - |`TAG(tag1) -> - (fun t _ _ tag -> eval_fold2_slist fl_list t tag empty_res - (loop_tag (first t) t llist tag1)) - | _ -> - fun t _ _ tag -> eval_fold2_slist fl_list t tag empty_res - (loop (first t) t llist tag) - ) - | `NIL,_ -> ( - match n_kind with - |`TAG(tag2) -> - fun t ctx _ tag -> - eval_fold2_slist fl_list t tag - (loop_tag (next t ctx) ctx rlist tag2) - empty_res - - | _ -> - fun t ctx _ tag -> - eval_fold2_slist fl_list t tag - (loop (next t ctx) ctx rlist tag) - empty_res - - ) - - | `TAG(tag1),`TAG(tag2) -> - fun t ctx _ tag -> - eval_fold2_slist fl_list t tag - (loop_tag (next t ctx) ctx rlist tag2) - (loop_tag (first t) t llist tag1) - - | `TAG(tag1),`ANY -> - fun t ctx _ tag -> - eval_fold2_slist fl_list t tag - (loop (next t ctx) ctx rlist tag) - (loop_tag (first t) t llist tag1) - - | `ANY,`TAG(tag2) -> - fun t ctx _ tag -> - eval_fold2_slist fl_list t tag - (loop_tag (next t ctx) ctx rlist tag2) - (loop (first t) t llist tag) - - - | _,_ -> - fun t ctx _ tag -> - eval_fold2_slist fl_list t tag - (loop (next t ctx) ctx rlist tag) - (loop (first t) t llist tag) - - - - in - let _ = Trace.register_funname cont - (Printf.sprintf "{first=%s, next=%s}" (Trace.get_funname first) (Trace.get_funname next)) - in - Code3Cache.set_fun td_trans slist tag cont; - cont - in - let cache_take_trans t ctx slist tag = - let cont = mk_trans t ctx slist tag in - cont t ctx slist tag - in - Code3Cache.init td_trans (cache_take_trans); - loop t ctx slist Tag.dummy - - - let run_top_down1 a tree = - let code_cache = Code3Cache.create () in - let fold_cache = Fold3Res.create BIG_A_SIZE in - let _,res = top_down1 a tree Tree.root a.init Tree.root code_cache fold_cache - in -(* Code3Cache.dump code_cache; *) - res - - - module Configuration = - struct - module Ptss = Set.Make(StateSet) - module IMap = Map.Make(StateSet) - type t = { hash : int; - sets : Ptss.t; - results : RS.t IMap.t } - let empty = { hash = 0; - sets = Ptss.empty; - results = IMap.empty; - } - let is_empty c = Ptss.is_empty c.sets - let add c s r = - if Ptss.mem s c.sets then - { c with results = IMap.add s (RS.concat r (IMap.find s c.results)) c.results} - else - { hash = HASHINT2(c.hash,Uid.to_int s.StateSet.Node.id); - sets = Ptss.add s c.sets; - results = IMap.add s r c.results - } - - let pr fmt c = Format.fprintf fmt "{"; - Ptss.iter (fun s -> StateSet.print fmt s; - Format.fprintf fmt " ") c.sets; - Format.fprintf fmt "}\n%!"; - IMap.iter (fun k d -> - StateSet.print fmt k; - Format.fprintf fmt "-> %i\n" (RS.length d)) c.results; - Format.fprintf fmt "\n%!" - - let merge c1 c2 = - let acc1 = - IMap.fold - ( fun s r acc -> - IMap.add s - (try - RS.concat r (IMap.find s acc) - with - | Not_found -> r) acc) c1.results IMap.empty - in - let imap = - IMap.fold (fun s r acc -> - IMap.add s - (try - RS.concat r (IMap.find s acc) - with - | Not_found -> r) acc) c2.results acc1 - in - let h,s = - Ptss.fold - (fun s (ah,ass) -> (HASHINT2(ah, Uid.to_int s.StateSet.Node.id ), - Ptss.add s ass)) - (Ptss.union c1.sets c2.sets) (0,Ptss.empty) - in - { hash = h; - sets =s; - results = imap } - - end - - let h_fold = Hashtbl.create 511 - - let fold_f_conf tree t slist fl_list conf dir= - let tag = Tree.tag tree t in - let rec loop sl fl acc = - match SList.node sl,fl with - |SList.Nil,[] -> acc - |SList.Cons(s,sll), formlist::fll -> - let r',mcnf = - let key = SList.hash sl,Formlist.hash formlist,dir in - try - Hashtbl.find h_fold key - with - Not_found -> let res = - if dir then eval_formlist tag s StateSet.empty formlist - else eval_formlist tag StateSet.empty s formlist - in (Hashtbl.add h_fold key res;res) - in - let (rb,rb1,rb2,mark) = bool_of_merge mcnf in - if rb && ((dir&&rb1)|| ((not dir) && rb2)) - then - let acc = - let old_r = - try Configuration.IMap.find s conf.Configuration.results - with Not_found -> RS.empty - in - Configuration.add acc r' (if mark then RS.cons t old_r else old_r) - in - loop sll fll acc - else loop sll fll acc - | _ -> assert false - in - loop slist fl_list Configuration.empty - - let h_trans = Hashtbl.create 4096 - - let get_up_trans slist ptag a tree = - let key = (HASHINT2(Uid.to_int slist.SList.Node.id ,ptag)) in - try - Hashtbl.find h_trans key - with - | Not_found -> - let f_list = - Hashtbl.fold (fun q l acc -> - List.fold_left (fun fl_acc (ts,t) -> - if TagSet.mem ptag ts then Formlist.cons t fl_acc - else fl_acc) - - acc l) - a.trans Formlist.nil - in - let res = SList.fold (fun _ acc -> f_list::acc) slist [] - in - (Hashtbl.add h_trans key res;res) - - - - let h_tdconf = Hashtbl.create 511 - let rec bottom_up a tree t conf next jump_fun root dotd init accu = - if (not dotd) && (Configuration.is_empty conf ) then - accu,conf,next - else - - let below_right = Tree.is_below_right tree t next in - - let accu,rightconf,next_of_next = - if below_right then (* jump to the next *) - bottom_up a tree next conf (jump_fun next) jump_fun (Tree.next_sibling tree t) true init accu - else accu,Configuration.empty,next - in - let sub = - if dotd then - if below_right then prepare_topdown a tree t true - else prepare_topdown a tree t false - else conf - in - let conf,next = - (Configuration.merge rightconf sub, next_of_next) - in - if t == root then accu,conf,next else - let parent = Tree.binary_parent tree t in - let ptag = Tree.tag tree parent in - let dir = Tree.is_left tree t in - let slist = Configuration.Ptss.fold (fun e a -> SList.cons e a) conf.Configuration.sets SList.nil in - let fl_list = get_up_trans slist ptag a parent in - let slist = SList.rev (slist) in - let newconf = fold_f_conf tree parent slist fl_list conf dir in - let accu,newconf = Configuration.IMap.fold (fun s res (ar,nc) -> - if StateSet.intersect s init then - ( RS.concat res ar ,nc) - else (ar,Configuration.add nc s res)) - (newconf.Configuration.results) (accu,Configuration.empty) - in - - bottom_up a tree parent newconf next jump_fun root false init accu - - and prepare_topdown a tree t noright = - let tag = Tree.tag tree t in - let r = - try - Hashtbl.find h_tdconf tag - with - | Not_found -> - let res = Hashtbl.fold (fun q l acc -> - if List.exists (fun (ts,_) -> TagSet.mem tag ts) l - then StateSet.add q acc - else acc) a.trans StateSet.empty - in Hashtbl.add h_tdconf tag res;res - in -(* let _ = pr ", among "; - StateSet.print fmt (Ptset.Int.elements r); - pr "\n%!"; - in *) - let r = SList.cons r SList.nil in - let set,res = top_down (~noright:noright) a tree t r t 1 (CodeCache.create BIG_A_SIZE) (Fold2Res.create 1024) in - let set = match SList.node set with - | SList.Cons(x,_) ->x - | _ -> assert false - in - Configuration.add Configuration.empty set res.(0) - - - - let run_bottom_up a tree k = - let t = Tree.root in - let trlist = Hashtbl.find a.trans (StateSet.choose a.init) - in - let init = List.fold_left - (fun acc (_,t) -> - let _,_,_,f,_ = Transition.node t in - let _,_,l = fst ( Formula.st f ) in - StateSet.union acc l) - StateSet.empty trlist - in - let tree1,jump_fun = - match k with - | `TAG (tag) -> - (*Tree.tagged_lowest t tag, fun tree -> Tree.tagged_next tree tag*) - (Tree.tagged_descendant tree tag t, let jump = Tree.tagged_following_below tree tag - in fun n -> jump n t ) - | `CONTAINS(_) -> (Tree.text_below tree t,let jump = Tree.text_next tree - in fun n -> jump n t) - | _ -> assert false - in - let tree2 = jump_fun tree1 in - let rec loop t next acc = - let acc,conf,next_of_next = bottom_up a tree t - Configuration.empty next jump_fun (Tree.root) true init acc - in - let acc = Configuration.IMap.fold - ( fun s res acc -> if StateSet.intersect init s - then RS.concat res acc else acc) conf.Configuration.results acc - in - if Tree.is_nil next_of_next (*|| Tree.equal next next_of_next *)then - acc - else loop next_of_next (jump_fun next_of_next) acc - in - loop tree1 tree2 RS.empty - - - end - - let top_down_count a t = let module RI = Run(Integer) in Integer.length (RI.run_top_down a t) - let top_down_count1 a t = let module RI = Run(Integer) in Integer.length (RI.run_top_down1 a t) - let top_down a t = let module RI = Run(IdSet) in (RI.run_top_down a t) - let top_down1 a t = let module RI = Run(IdSet) in (RI.run_top_down1 a t) - let bottom_up_count a t k = let module RI = Run(Integer) in Integer.length (RI.run_bottom_up a t k) - let bottom_up a t k = let module RI = Run(IdSet) in (RI.run_bottom_up a t k) - - module Test (Doc : sig val doc : Tree.t end) = - struct - module Results = GResult(Doc) - let top_down a t = let module R = Run(Results) in (R.run_top_down a t) - let top_down1 a t = let module R = Run(Results) in (R.run_top_down1 a t) - end -