X-Git-Url: http://git.nguyen.vg/gitweb/?a=blobdiff_plain;f=ata.ml;h=f32005d412e95a023ece1a36318d52f1202d2896;hb=25dd7fcc77c2188732d96d5ff98d759bb81737cb;hp=aec548f90dd72ea7b7d669d6b98a4c0820a3441d;hpb=5b4679e20761058f1e04c123da52631c0dd265cc;p=SXSI%2Fxpathcomp.git diff --git a/ata.ml b/ata.ml index aec548f..f32005d 100644 --- a/ata.ml +++ b/ata.ml @@ -1,605 +1,943 @@ -(* Todo refactor and remove this alias *) INCLUDE "debug.ml" -module Tree = Tree.Binary +INCLUDE "utils.ml" -let gen_id = - let id = ref (-1) in - fun () -> incr id;!id -module State = struct +type jump_kind = [ `TAG of Tag.t | `CONTAINS of string | `NOTHING ] +(* Todo : move elsewhere *) +external vb : bool -> int = "%identity" + +module State : +sig + include Sigs.T with type t = int + val make : unit -> t +end = +struct type t = int - let mk = gen_id + let make = + let id = ref (-1) in + fun () -> incr id;!id + let compare = (-) + let equal = (==) + external hash : t -> int = "%identity" + let print fmt x = Format.fprintf fmt "%i" x + let dump fmt x = print fmt x + let check x = + if x < 0 then failwith (Printf.sprintf "State: Assertion %i < 0 failed" x) +end +module StateSet = struct + include Ptset.Int + let print ppf s = + Format.pp_print_string ppf "{ "; + iter (fun i -> Format.fprintf ppf "%i " i) s; + Format.pp_print_string ppf "}"; + Format.pp_print_flush ppf () end -let mk_state = State.mk + +module Formula = +struct + type 'hcons expr = + | False | True + | Or of 'hcons * 'hcons + | And of 'hcons * 'hcons + | Atom of ([ `Left | `Right | `LLeft | `RRight ]*bool*State.t) + type 'hcons node = { + pos : 'hcons expr; + mutable neg : 'hcons; + st : (StateSet.t*StateSet.t*StateSet.t)*(StateSet.t*StateSet.t*StateSet.t); + size: int; (* Todo check if this is needed *) + } + + external hash_const_variant : [> ] -> int = "%identity" + module rec HNode : Hcons.S with type data = Node.t = Hcons.Make (Node) + and Node : Hashtbl.HashedType with type t = HNode.t node = + struct + type t = HNode.t node + let equal x y = x.size == y.size && + match x.pos,y.pos with + | False,False + | True,True -> true + | Or(xf1,xf2),Or(yf1,yf2) + | And(xf1,xf2),And(yf1,yf2) -> (HNode.equal xf1 yf1) && (HNode.equal xf2 yf2) + | Atom(d1,p1,s1), Atom(d2,p2,s2) -> d1 == d2 && (p1==p2) && s1 == s2 + | _ -> false + let hash f = + match f.pos with + | False -> 0 + | True -> 1 + | Or (f1,f2) -> HASHINT3(PRIME2,HNode.hash f1,HNode.hash f2) + | And (f1,f2) -> HASHINT3(PRIME3,HNode.hash f1,HNode.hash f2) + | Atom(d,p,s) -> HASHINT4(PRIME4,hash_const_variant d,vb p,s) + end + + type t = HNode.t + let hash = HNode.hash + let uid = HNode.uid + let equal = HNode.equal + let expr f = (HNode.node f).pos + let st f = (HNode.node f ).st + let size f = (HNode.node f).size + + let prio f = + match expr f with + | True | False -> 10 + | Atom _ -> 8 + | And _ -> 6 + | Or _ -> 1 + + let rec print ?(parent=false) ppf f = + if parent then Format.fprintf ppf "("; + let _ = match expr f with + | True -> Format.fprintf ppf "T" + | False -> Format.fprintf ppf "F" + | And(f1,f2) -> + print ~parent:(prio f > prio f1) ppf f1; + Format.fprintf ppf " ∧ "; + print ~parent:(prio f > prio f2) ppf f2; + | Or(f1,f2) -> + (print ppf f1); + Format.fprintf ppf " ∨ "; + (print ppf f2); + | Atom(dir,b,s) -> Format.fprintf ppf "%s%s[%i]" + (if b then "" else "¬") + (match dir with + | `Left -> "↓₁" + | `Right -> "↓₂" + | `LLeft -> "⇓₁" + | `RRight -> "⇓₂") s + in + if parent then Format.fprintf ppf ")" + + let print ppf f = print ~parent:false ppf f + + let is_true f = (expr f) == True + let is_false f = (expr f) == False + + + let cons pos neg s1 s2 size1 size2 = + let nnode = HNode.make { pos = neg; neg = (Obj.magic 0); st = s2; size = size2 } in + let pnode = HNode.make { pos = pos; neg = nnode ; st = s1; size = size1 } + in + (HNode.node nnode).neg <- pnode; (* works because the neg field isn't taken into + account for hashing ! *) + pnode,nnode + + let empty_triple = StateSet.empty,StateSet.empty,StateSet.empty + let empty_hex = empty_triple,empty_triple + let true_,false_ = cons True False empty_hex empty_hex 0 0 + let atom_ d p s = + let si = StateSet.singleton s in + let ss = match d with + | `Left -> (si,StateSet.empty,si),empty_triple + | `Right -> empty_triple,(si,StateSet.empty,si) + | `LLeft -> (StateSet.empty,si,si),empty_triple + | `RRight -> empty_triple,(StateSet.empty,si,si) + in fst (cons (Atom(d,p,s)) (Atom(d,not p,s)) ss ss 1 1) + + let not_ f = (HNode.node f).neg + let union_hex ((l1,ll1,lll1),(r1,rr1,rrr1)) ((l2,ll2,lll2),(r2,rr2,rrr2)) = + (StateSet.mem_union l1 l2 ,StateSet.mem_union ll1 ll2,StateSet.mem_union lll1 lll2), + (StateSet.mem_union r1 r2 ,StateSet.mem_union rr1 rr2,StateSet.mem_union rrr1 rrr2) + + let merge_states f1 f2 = + let sp = + union_hex (st f1) (st f2) + and sn = + union_hex (st (not_ f1)) (st (not_ f2)) + in + sp,sn -type state = State.t + let order f1 f2 = if uid f1 < uid f2 then f2,f1 else f1,f2 -type predicate = [ `Left of (Tree.t -> bool) | `Right of (Tree.t -> bool) | - `True - ] + let or_ f1 f2 = + (* Tautologies: x|x, x|not(x) *) -let eval_pred t = - function `True -> true - | `Left f | `Right f -> f t - -type formula_expr = - | False | True - | Or of formula * formula - | And of formula * formula - | Atom of ([ `Left | `Right ]*bool*state) -and formula = { fid: int; - pos : formula_expr; - neg : formula; - st : Ptset.t*Ptset.t; - size: int; - } - + if equal f1 f2 then f1 else + if equal f1 (not_ f2) then true_ else -module FormNode = -struct - type t = formula - let hash = function - | False -> 0 - | True -> 1 - | And(f1,f2) -> 2+17*f1.fid + 37*f2.fid - | Or(f1,f2) -> 3+101*f1.fid + 253*f2.fid - | Atom(d,b,s) -> 5+(if d=`Left then 11 else 19)*(if b then 23 else 31)*s - - let hash t = (hash t.pos) land max_int - - let equal f1 f2 = - match f1.pos,f2.pos with - | False,False | True,True -> true - | Atom(d1,b1,s1), Atom(d2,b2,s2) when (d1 = d2) && (b1=b2) &&(s1=s2) -> true - | Or(g1,g2),Or(h1,h2) - | And(g1,g2),And(h1,h2) -> g1.fid == h1.fid && g2.fid == h2.fid - | _ -> false + (* simplification *) + if is_true f1 || is_true f2 then true_ else + if is_false f1 && is_false f2 then false_ else + if is_false f1 then f2 else + if is_false f2 then f1 else + + (* commutativity of | *) + + let f1,f2 = order f1 f2 in + let psize = (size f1) + (size f2) in + let nsize = (size (not_ f1)) + (size (not_ f2)) in + let sp,sn = merge_states f1 f2 in + fst (cons (Or(f1,f2)) (And(not_ f1,not_ f2)) sp sn psize nsize) + + + let and_ f1 f2 = + + (* Tautologies: x&x, x¬(x) *) + + if equal f1 f2 then f1 else + if equal f1 (not_ f2) then false_ else + + (* simplifications *) + + if is_true f1 && is_true f2 then true_ else + if is_false f1 || is_false f2 then false_ else + if is_true f1 then f2 else + if is_true f2 then f1 else + + (* commutativity of & *) + + let f1,f2 = order f1 f2 in + let psize = (size f1) + (size f2) in + let nsize = (size (not_ f1)) + (size (not_ f2)) in + let sp,sn = merge_states f1 f2 in + fst (cons (And(f1,f2)) (Or(not_ f1,not_ f2)) sp sn psize nsize) + module Infix = struct + let ( +| ) f1 f2 = or_ f1 f2 + let ( *& ) f1 f2 = and_ f1 f2 + let ( *+ ) d s = atom_ d true s + let ( *- ) d s = atom_ d false s + end end -module WH = Weak.Make(FormNode) - -let f_pool = WH.create 107 - -let true_,false_ = - let rec t = { fid = 1; pos = True; neg = f ; st = Ptset.empty,Ptset.empty; size =1; } - and f = { fid = 0; pos = False; neg = t; st = Ptset.empty,Ptset.empty; size = 1; } - in - WH.add f_pool f; - WH.add f_pool t; - t,f - -let is_true f = f.fid == 1 -let is_false f = f.fid == 0 - - -let cons pos neg s1 s2 size1 size2 = - let rec pnode = - { fid = gen_id (); - pos = pos; - neg = nnode; - st = s1; - size = size1;} - and nnode = { - fid = gen_id (); - pos = neg; - neg = pnode; - st = s2; - size = size2; - } - in - (WH.merge f_pool pnode),(WH.merge f_pool nnode) - -let atom_ d p s = - let si = Ptset.singleton s in - let ss = match d with - | `Left -> si,Ptset.empty - | `Right -> Ptset.empty,si - in fst (cons (Atom(d,p,s)) (Atom(d,not p,s)) ss ss 1 1) - -let merge_states f1 f2 = - let sp = - Ptset.union (fst f1.st) (fst f2.st), - Ptset.union (snd f1.st) (snd f2.st) - and sn = - Ptset.union (fst f1.neg.st) (fst f2.neg.st), - Ptset.union (snd f1.neg.st) (snd f2.neg.st) - in - sp,sn - -let full_or_ f1 f2 = - let f1,f2 = if f1.fid < f2.fid then f2,f1 else f1,f2 in - let sp,sn = merge_states f1 f2 in - let psize = f1.size + f2.size in - let nsize = f1.neg.size + f2.neg.size in - fst (cons (Or(f1,f2)) (And(f1.neg,f2.neg)) sp sn psize nsize ) - -let or_ f1 f2 = - let f1,f2 = if f1.fid < f2.fid then f2,f1 else f1,f2 in - if is_true f1 || is_true f2 then true_ - else if is_false f1 && is_false f2 then false_ - else if is_false f1 then f2 - else if is_false f2 then f1 - else - let psize = f1.size + f2.size in - let nsize = f1.neg.size + f2.neg.size in - let sp,sn = merge_states f1 f2 in - fst (cons (Or(f1,f2)) (And(f1.neg,f2.neg)) sp sn psize nsize) - - - -let and_ f1 f2 = - let f1,f2 = if f1.fid < f2.fid then f2,f1 else f1,f2 in - if is_true f1 && is_true f2 then true_ - else if is_false f1 || is_false f2 then false_ - else if is_true f1 then f2 - else if is_true f2 then f1 - else - let psize = f1.size + f2.size in - let nsize = f1.neg.size + f2.neg.size in - let sp,sn = merge_states f1 f2 in - fst (cons (And(f1,f2)) (Or(f1.neg,f2.neg)) sp sn psize nsize) - + +module Transition = struct + + type node = State.t*bool*Formula.t*bool + include Hcons.Make(struct + type t = node + let hash (s,m,f,b) = HASHINT4(s,Formula.uid f,vb m,vb b) + let equal (s,b,f,m) (s',b',f',m') = + s == s' && b==b' && m==m' && Formula.equal f f' + end) + + let print ppf f = let (st,mark,form,b) = node f in + Format.fprintf ppf "%i %s" st (if mark then "⇒" else "→"); + Formula.print ppf form; + Format.fprintf ppf "%s%!" (if b then " (b)" else "") + -let not_ f = f.neg + module Infix = struct + let ( ?< ) x = x + let ( >< ) state (l,mark) = state,(l,mark,false) + let ( ><@ ) state (l,mark) = state,(l,mark,true) + let ( >=> ) (state,(label,mark,bur)) form = (state,label,(make (state,mark,form,bur))) + end +end -module HTagSetKey = +module SetTagKey = struct - type t = Ptset.t*Tag.t - let int_hash key = key lsl 31 lor (key lsl 8) - let equal (s1,s2) (t1,t2) = Tag.equal s2 t2 && Ptset.equal s1 t1 - let hash (s,t) = int_hash (Ptset.hash s) lxor ( int_hash (Tag.hash t)) + type t = Ptset.Int.t*Tag.t + let equal (s1,t1) (s2,t2) = (t1 == t2) && Ptset.Int.equal s1 s2 + let hash (s,t) = HASHINT2(Ptset.Int.hash s,Tag.hash t) end -module HTagSet = Hashtbl.Make(HTagSetKey) -type t = { +module TransTable = Hashtbl +module CachedTransTable = Hashtbl.Make(SetTagKey) + +module Formlist = struct + include Ptset.Make(Transition) + let print ppf fl = + iter (fun t -> Transition.print ppf t; Format.pp_print_newline ppf ()) fl +end + + +type 'a t = { id : int; - mutable states : Ptset.t; - init : Ptset.t; - mutable final : Ptset.t; - universal : Ptset.t; + mutable states : Ptset.Int.t; + init : Ptset.Int.t; + starstate : Ptset.Int.t option; (* Transitions of the Alternating automaton *) - phi : (state,(TagSet.t*(bool*formula*predicate)) list) Hashtbl.t; - delta : (state*Tag.t, (bool*formula*predicate)) Hashtbl.t; -(* delta : (state,(bool*formula*predicate) TagMap.t) Hashtbl.t; *) - sigma : (bool*formula*(predicate list*predicate list)*bool) HTagSet.t; - } + trans : (State.t,(TagSet.t*Transition.t) list) Hashtbl.t; + query_string: string; + } + + +let dump ppf a = + Format.fprintf ppf "Automaton (%i) :\n" a.id; + Format.fprintf ppf "States : "; StateSet.print ppf a.states; + Format.fprintf ppf "\nInitial states : "; StateSet.print ppf a.init; + Format.fprintf ppf "\nAlternating transitions :\n"; + let l = Hashtbl.fold (fun k t acc -> + (List.map (fun (ts,tr) -> (ts,k),Transition.node tr) t) @ acc) a.trans [] in + let l = List.sort (fun ((tsx,x),_) ((tsy,y),_) -> + if y-x == 0 then TagSet.compare tsy tsx else y-x) l in + let maxh,maxt,l_print = + List.fold_left ( + fun (maxh,maxt,l) ((ts,q),(_,b,f,_)) -> + let s = + if TagSet.is_finite ts + then "{" ^ (TagSet.fold (fun t a -> a ^ " '" ^ (Tag.to_string t)^"'") ts "") ^" }" + else let cts = TagSet.neg ts in + if TagSet.is_empty cts then "*" else + (TagSet.fold (fun t a -> a ^ " " ^ (Tag.to_string t)) cts "*\\{" + )^ "}" + in + let s = Printf.sprintf "(%s,%i)" s q in + let s_frm = + Formula.print Format.str_formatter f; + Format.flush_str_formatter() + in + (max (String.length s) maxh, max (String.length s_frm) maxt, + (s,(if b then "⇒" else "→"),s_frm)::l)) (0,0,[]) l + in + Format.fprintf ppf "%s\n%!" (String.make (maxt+maxh+3) '_'); + List.iter (fun (s,m,f) -> let s = s ^ (String.make (maxh-(String.length s)) ' ') in + Format.fprintf ppf "%s %s %s\n" s m f) l_print; + Format.fprintf ppf "%s\n%!" (String.make (maxt+maxh+3) '_') + + +module MemoForm = Memoizer.Make( + Hashtbl.Make(struct + type t = Formula.t*(StateSet.t*StateSet.t) + let equal (f1,(s1,t1)) (f2,(s2,t2)) = + Formula.equal f1 f2 && StateSet.equal s1 s2 && StateSet.equal t1 t2 + let hash (f,(s,t)) = + HASHINT3(Formula.uid f ,StateSet.uid s,StateSet.uid t) + end)) + +module F = Formula + + let eval_form_bool f s1 s2 = + let sets = (s1,s2) in + let eval = MemoForm.make_rec( + fun eval (f,_) -> + match F.expr f with + | F.True -> true,true,true + | F.False -> false,false,false + | F.Atom((`Left|`LLeft),b,q) -> + if b == (StateSet.mem q s1) + then (true,true,false) + else false,false,false + | F.Atom(_,b,q) -> + if b == (StateSet.mem q s2) + then (true,false,true) + else false,false,false + | F.Or(f1,f2) -> + let b1,rl1,rr1 = eval (f1,sets) + in + if b1 && rl1 && rr1 then (true,true,true) else + let b2,rl2,rr2 = eval (f2,sets) in + let rl1,rr1 = if b1 then rl1,rr1 else false,false + and rl2,rr2 = if b2 then rl2,rr2 else false,false + in (b1 || b2, rl1||rl2,rr1||rr2) + + | F.And(f1,f2) -> + let b1,rl1,rr1 = eval (f1,sets) in + if b1 && rl1 && rr1 then (true,true,true) else + if b1 then + let b2,rl2,rr2 = eval (f2,sets) in + if b2 then (true,rl1||rl2,rr1||rr2) else (false,false,false) + else (false,false,false) + ) + in + eval (f,sets) + + + module MemoFormlist = Memoizer.Make( + Hashtbl.Make(struct + type t = Formlist.t*(StateSet.t*StateSet.t) + let equal (f1,(s1,t1)) (f2,(s2,t2)) = + Formlist.equal f1 f2 && StateSet.equal s1 s2 && StateSet.equal t1 t2 + let hash (f,(s,t)) = + HASHINT3(Formlist.uid f ,StateSet.uid s,StateSet.uid t) + end)) + + let eval_formlist ?(memo=true) s1 s2 fl = + let sets = (s1,s2) in + let eval = MemoFormlist.make_rec ( + fun eval (fl,_) -> + if Formlist.is_empty fl + then StateSet.empty,false,false,false,false + else + let f,fll = Formlist.uncons fl in + let q,mark,f,_ = Transition.node f in + let b,b1,b2 = eval_form_bool f s1 s2 in + let s,b',b1',b2',amark = eval (fll,sets) in + if b then (StateSet.add q s, b, b1'||b1,b2'||b2,mark||amark) + else s,b',b1',b2',amark ) + in eval (fl,sets) + + + let tags_of_state a q = + Hashtbl.fold + (fun p l acc -> + if p == q then List.fold_left + (fun acc (ts,t) -> + let _,_,_,aux = Transition.node t in + if aux then acc else + TagSet.cup ts acc) acc l - module Pair (X : Set.OrderedType) (Y : Set.OrderedType) = - struct - type t = X.t*Y.t - let compare (x1,y1) (x2,y2) = - let r = X.compare x1 x2 in - if r == 0 then Y.compare y1 y2 - else r - end + else acc) a.trans TagSet.empty + + - module PL = Set.Make (Pair (Ptset) (Ptset)) - - - let pr_st ppf l = Format.fprintf ppf "{"; - begin - match l with - | [] -> () - | [s] -> Format.fprintf ppf " %i" s - | p::r -> Format.fprintf ppf " %i" p; - List.iter (fun i -> Format.fprintf ppf "; %i" i) r - end; - Format.fprintf ppf " }" - let rec pr_frm ppf f = match f.pos with - | True -> Format.fprintf ppf "⊤" - | False -> Format.fprintf ppf "⊥" - | And(f1,f2) -> - Format.fprintf ppf "("; - (pr_frm ppf f1); - Format.fprintf ppf ") ∧ ("; - (pr_frm ppf f2); - Format.fprintf ppf ")" - | Or(f1,f2) -> - (pr_frm ppf f1); - Format.fprintf ppf " ∨ "; - (pr_frm ppf f2); - | Atom(dir,b,s) -> Format.fprintf ppf "%s%s[%i]" - (if b then "" else "¬") - (if dir = `Left then "↓₁" else "↓₂") s - - let dnf_hash = Hashtbl.create 17 - - let rec dnf_aux f = match f.pos with - | False -> PL.empty - | True -> PL.singleton (Ptset.empty,Ptset.empty) - | Atom(`Left,_,s) -> PL.singleton (Ptset.singleton s,Ptset.empty) - | Atom(`Right,_,s) -> PL.singleton (Ptset.empty,Ptset.singleton s) - | Or(f1,f2) -> PL.union (dnf f1) (dnf f2) - | And(f1,f2) -> - let pl1 = dnf f1 - and pl2 = dnf f2 - in - PL.fold (fun (s1,s2) acc -> - PL.fold ( fun (s1', s2') acc' -> - (PL.add - ((Ptset.union s1 s1'), - (Ptset.union s2 s2')) acc') ) - pl2 acc ) - pl1 PL.empty - - - and dnf f = - try - Hashtbl.find dnf_hash f.fid - with - Not_found -> - let d = dnf_aux f in - Hashtbl.add dnf_hash f.fid d;d - - - let can_top_down f = - let nf = dnf f in - if (PL.cardinal nf > 3)then None - else match PL.elements nf with - | [(s1,s2); (t1,t2); (u1,u2)] when - Ptset.is_empty s1 && Ptset.is_empty s2 && Ptset.is_empty t1 && Ptset.is_empty u2 - -> Some(true,t2,u1) - | [(t1,t2); (u1,u2)] when Ptset.is_empty t1 && Ptset.is_empty u2 - -> Some(false,t2,u1) - | _ -> None - - - let equal_form f1 f2 = - (f1.fid == f2.fid) || (FormNode.equal f1 f2) || (PL.equal (dnf f1) (dnf f2)) + let tags a qs = + let ts = Ptset.Int.fold (fun q acc -> TagSet.cup acc (tags_of_state a q)) qs TagSet.empty + in + if TagSet.is_finite ts + then `Positive(TagSet.positive ts) + else `Negative(TagSet.negative ts) + + let inter_text a b = + match b with + | `Positive s -> let r = Ptset.Int.inter a s in (r,Ptset.Int.mem Tag.pcdata r, true) + | `Negative s -> let r = Ptset.Int.diff a s in (r, Ptset.Int.mem Tag.pcdata r, false) + + let mk_nil_ctx x _ = Tree.mk_nil x + let next_sibling_ctx x _ = Tree.next_sibling x + let r_ignore _ x = x - let dump ppf a = - Format.fprintf ppf "Automaton (%i) :\n" a.id; - Format.fprintf ppf "States : "; pr_st ppf (Ptset.elements a.states); - Format.fprintf ppf "\nInitial states : "; pr_st ppf (Ptset.elements a.init); - Format.fprintf ppf "\nFinal states : "; pr_st ppf (Ptset.elements a.final); - Format.fprintf ppf "\nUniversal states : "; pr_st ppf (Ptset.elements a.universal); - Format.fprintf ppf "\nAlternating transitions :\n------------------------------\n"; - let l = Hashtbl.fold (fun k t acc -> - (List.map (fun (t,(m,f,p)) -> (t,k),(m,f,p)) t)@ acc) a.phi [] in - let l = List.sort (fun ((tsx,x),_) ((tsy,y),_) -> if x-y == 0 then TagSet.compare tsx tsy else x-y) l in - List.iter (fun ((ts,q),(b,f,_)) -> - - let s = - if TagSet.is_finite ts - then "{" ^ (TagSet.fold (fun t a -> a ^ " " ^ (Tag.to_string t)) ts "") ^"}" - else let cts = TagSet.neg ts in - if TagSet.is_empty cts then "*" else - (TagSet.fold (fun t a -> a ^ " " ^ (Tag.to_string t)) cts "*\\{" - )^ "}" - in - Format.fprintf ppf "(%s,%i) %s " s q (if b then "=>" else "->"); - pr_frm ppf f; - Format.fprintf ppf "\n")l; - - Format.fprintf ppf "NFA transitions :\n------------------------------\n"; - HTagSet.iter (fun (qs,t) (b,f,_,_) -> - pr_st ppf (Ptset.elements qs); - Format.fprintf ppf ",%s %s " (Tag.to_string t) (if b then "=>" else "->"); - pr_frm ppf f; - Format.fprintf ppf "(fid=%i) left=" f.fid; - let l,r = f.st in pr_st ppf (Ptset.elements l); - Format.fprintf ppf ", right="; - pr_st ppf (Ptset.elements r); - Format.fprintf ppf "\n"; - ) a.sigma; - Format.fprintf ppf "=======================================\n" - - module Transitions = struct - type t = state*TagSet.t*bool*formula*predicate - let ( ?< ) x = x - let ( >< ) state (l,b) = state,(l,b,`True) - let ( ><@ ) state (l,b,p) = state,(l,b,p) - let ( >=> ) (state,(label,mark,pred)) form = (state,label,mark,form,pred) - let ( +| ) f1 f2 = or_ f1 f2 - let ( *& ) f1 f2 = and_ f1 f2 - let ( ** ) d s = atom_ d true s + module type ResultSet = + sig + type t + val empty : t + val cons : Tree.t -> t -> t + val concat : t -> t -> t + val iter : (Tree.t -> unit) -> t -> unit + val fold : (Tree.t -> 'a -> 'a) -> t -> 'a -> 'a + val map : (Tree.t -> Tree.t) -> t -> t + val length : t -> int + end + + module Integer : ResultSet = + struct + type t = int + let empty = 0 + let cons _ x = x+1 + let concat x y = x + y + let iter _ _ = failwith "iter not implemented" + let fold _ _ _ = failwith "fold not implemented" + let map _ _ = failwith "map not implemented" + let length x = x + end + + module IdSet : ResultSet = + struct + type node = Nil + | Cons of Tree.t * node + | Concat of node*node + + and t = { node : node; + length : int } + + let empty = { node = Nil; length = 0 } + + let cons e t = { node = Cons(e,t.node); length = t.length+1 } + let concat t1 t2 = { node = Concat(t1.node,t2.node); length = t1.length+t2.length } + let append e t = { node = Concat(t.node,Cons(e,Nil)); length = t.length+1 } + + let fold f l acc = + let rec loop acc t = match t with + | Nil -> acc + | Cons (e,t) -> loop (f e acc) t + | Concat (t1,t2) -> loop (loop acc t1) t2 + in + loop acc l.node + + let length l = l.length + + + let iter f l = + let rec loop = function + | Nil -> () + | Cons (e,t) -> f e; loop t + | Concat(t1,t2) -> loop t1;loop t2 + in loop l.node + + let map f l = + let rec loop = function + | Nil -> Nil + | Cons(e,t) -> Cons(f e, loop t) + | Concat(t1,t2) -> Concat(loop t1,loop t2) + in + { l with node = loop l.node } - end - type transition = Transitions.t + + end - let equal_trans (q1,t1,m1,f1,_) (q2,t2,m2,f2,_) = - (q1 == q2) && (TagSet.equal t1 t2) && (m1 == m2) && (equal_form f1 f2) - - module TS = - struct - type node = Nil | Cons of Tree.t * node | Concat of node*node - and t = { node : node; size : int } - let node n s = { node=n; size = s } + module Run (RS : ResultSet) = + struct - let empty = node Nil 0 - - let cons e t = node (Cons(e,t.node)) (t.size+1) - let concat t1 t2 = node (Concat (t1.node,t2.node)) (t1.size+t2.size) - let append e t = concat t (cons e empty) - - let to_list_rev t = - let rec aux acc l rest = - match l with - | Nil -> begin - match rest with - | Nil -> acc - | Cons(e,t) -> aux (e::acc) t Nil - | Concat(t1,t2) -> aux acc t1 t2 - end - | Cons(e,r) -> aux (e::acc) r rest - | Concat(t1,t2) -> aux acc t1 (Concat(t2,rest)) - in - aux [] t.node Nil - let length = function { size = s } -> s - let iter f { node = n } = - let rec loop = function - | Nil -> () - | Cons(e,n) -> let _ = f e in loop n - | Concat(n1,n2) -> let _ = loop n1 in loop n2 - in loop n + let fmt = Format.err_formatter + let pr x = Format.fprintf fmt x + + type ptset_list = Nil | Cons of Ptset.Int.t*int*ptset_list + let hpl l = match l with + | Nil -> 0 + | Cons (_,i,_) -> i - end + let cons s l = Cons (s,(Ptset.Int.hash s) + 65599 * (hpl l), l) + + let rec empty_size n = + if n == 0 then Nil + else cons Ptset.Int.empty (empty_size (n-1)) + + let fold_pl f l acc = + let rec loop l acc = match l with + Nil -> acc + | Cons(s,h,pl) -> loop pl (f s h acc) + in + loop l acc + let map_pl f l = + let rec loop = + function Nil -> Nil + | Cons(s,h,ll) -> cons (f s) (loop ll) + in loop l + let iter_pl f l = + let rec loop = + function Nil -> () + | Cons(s,h,ll) -> (f s);(loop ll) + in loop l + + let rev_pl l = + let rec loop acc l = match l with + | Nil -> acc + | Cons(s,_,ll) -> loop (cons s acc) ll + in + loop Nil l + + let rev_map_pl f l = + let rec loop acc l = + match l with + | Nil -> acc + | Cons(s,_,ll) -> loop (cons (f s) acc) ll + in + loop Nil l + + module IntSet = Set.Make(struct type t = int let compare = (-) end) - module BottomUpNew = struct - IFDEF DEBUG THEN - type trace = - | TNil of Ptset.t*Ptset.t - | TNode of Ptset.t*Ptset.t*bool* (int*bool*formula) list - - let traces = Hashtbl.create 17 - let dump_trace t = - let out = open_out "debug_trace.dot" - in - let outf = Format.formatter_of_out_channel out in +INCLUDE "html_trace.ml" + +END + + let td_trans = Hashtbl.create 4096 + let mk_fun f s = D_IGNORE_(register_funname f s,f) + let mk_app_fun f arg s = let g = f arg in + D_IGNORE_(register_funname g ((get_funname f) ^ " " ^ s), g) + + let string_of_ts tags = (Ptset.Int.fold (fun t a -> a ^ " " ^ (Tag.to_string t) ) tags "{")^ " }" - let rec aux t num = - if Tree.is_node t - then - match (try Hashtbl.find traces (Tree.id t) with Not_found -> TNil(Ptset.empty,Ptset.empty)) with - | TNode(r,s,mark,trs) -> - let numl = aux (Tree.left t) num in - let numr = aux (Tree.right t) (numl+1) in - let mynum = numr + 1 in - Format.fprintf outf "n%i [ label=\"<%s>\\nr=" mynum (Tag.to_string (Tree.tag t)); - pr_st outf (Ptset.elements r); - Format.fprintf outf "\\ns="; - pr_st outf (Ptset.elements s); - List.iter (fun (q,m,f) -> - Format.fprintf outf "\\n%i %s" q (if m then "⇨" else "→"); - pr_frm outf f ) trs; - Format.fprintf outf "\", %s shape=box ];\n" - (if mark then "color=cyan1, style=filled," else ""); - let _ = Format.fprintf outf "n%i -> n%i;\n" mynum numl in - let _ = Format.fprintf outf "n%i -> n%i;\n" mynum numr in - mynum - | TNil(r,s) -> Format.fprintf outf "n%i [ shape=box, label=\"Nil\\nr=" num; - pr_st outf (Ptset.elements r); - Format.fprintf outf "\\ns="; - pr_st outf (Ptset.elements s); - Format.fprintf outf "\"];\n";num - else - match Hashtbl.find traces (-10) with - | TNil(r,s) -> - Format.fprintf outf "n%i [ shape=box, label=\"Nil\\nr=" num; - pr_st outf (Ptset.elements r); - Format.fprintf outf "\\ns="; - pr_st outf (Ptset.elements s); - Format.fprintf outf "\"];\n"; - num + let choose_jump tagset qtags1 qtagsn a f_nil f_text f_t1 f_s1 f_tn f_sn f_notext = + let tags1,hastext1,fin1 = inter_text tagset (tags a qtags1) in + let tagsn,hastextn,finn = inter_text tagset (tags a qtagsn) in + if (hastext1||hastextn) then f_text (* jumping to text nodes doesn't work really well *) + else if (Ptset.Int.is_empty tags1) && (Ptset.Int.is_empty tagsn) then f_nil + else if (Ptset.Int.is_empty tagsn) then + if (Ptset.Int.is_singleton tags1) + then (* TaggedChild/Sibling *) + let tag = (Ptset.Int.choose tags1) in mk_app_fun f_t1 tag (Tag.to_string tag) + else (* SelectChild/Sibling *) + mk_app_fun f_s1 tags1 (string_of_ts tags1) + else if (Ptset.Int.is_empty tags1) then + if (Ptset.Int.is_singleton tagsn) + then (* TaggedDesc/Following *) + let tag = (Ptset.Int.choose tagsn) in mk_app_fun f_tn tag (Tag.to_string tag) + else (* SelectDesc/Following *) + mk_app_fun f_sn tagsn (string_of_ts tagsn) + else f_notext + + let choose_jump_down a b c d = + choose_jump a b c d + (mk_fun (Tree.mk_nil) "Tree.mk_nil") + (mk_fun (Tree.text_below) "Tree.text_below") + (mk_fun (fun _ -> Tree.node_child) "[TaggedChild]Tree.node_child") (* !! no tagged_child in Tree.ml *) + (mk_fun (fun _ -> Tree.node_child) "[SelectChild]Tree.node_child") (* !! no select_child in Tree.ml *) + (mk_fun (Tree.tagged_desc) "Tree.tagged_desc") + (mk_fun (fun _ -> Tree.node_child ) "[SelectDesc]Tree.node_child") (* !! no select_desc *) + (mk_fun (Tree.node_child) "Tree.node_child") + + let choose_jump_next a b c d = + choose_jump a b c d + (mk_fun (fun t _ -> Tree.mk_nil t) "Tree.mk_nil2") + (mk_fun (Tree.text_next) "Tree.text_next") + (mk_fun (fun _ -> Tree.node_sibling_ctx) "[TaggedSibling]Tree.node_sibling_ctx")(* !! no tagged_sibling in Tree.ml *) + (mk_fun (fun _ -> Tree.node_sibling_ctx) "[SelectSibling]Tree.node_sibling_ctx")(* !! no select_sibling in Tree.ml *) + (mk_fun (Tree.tagged_foll_ctx) "Tree.tagged_foll_ctx") + (mk_fun (fun _ -> Tree.node_sibling_ctx) "[SelectFoll]Tree.node_sibling_ctx")(* !! no select_foll *) + (mk_fun (Tree.node_sibling_ctx) "Tree.node_sibling_ctx") + + let get_trans slist tag a t = + try + Hashtbl.find td_trans (tag,hpl slist) + with + | Not_found -> + let fl_list,llist,rlist,ca,da,sa,fa = + fold_pl + (fun set _ (fll_acc,lllacc,rllacc,ca,da,sa,fa) -> (* For each set *) + let fl,ll,rr,ca,da,sa,fa = + StateSet.fold + (fun q acc -> + List.fold_left + (fun ((fl_acc,ll_acc,rl_acc,c_acc,d_acc,s_acc,f_acc) as acc) + (ts,t) -> + if (TagSet.mem tag ts) + then + let _,_,f,_ = Transition.node t in + let (child,desc,below),(sibl,foll,after) = Formula.st f in + (Formlist.add t fl_acc, + StateSet.union ll_acc below, + StateSet.union rl_acc after, + StateSet.union child c_acc, + StateSet.union desc d_acc, + StateSet.union sibl s_acc, + StateSet.union foll f_acc) + else acc ) acc ( + try Hashtbl.find a.trans q + with + Not_found -> Printf.eprintf "Looking for state %i, doesn't exist!!!\n%!" + q;[] + ) + + ) set (Formlist.empty,StateSet.empty,StateSet.empty,ca,da,sa,fa) + in fl::fll_acc, cons ll lllacc, cons rr rllacc,ca,da,sa,fa) + slist ([],Nil,Nil,StateSet.empty,StateSet.empty,StateSet.empty,StateSet.empty) + in + (* Logic to chose the first and next function *) + let tags_below,tags_after = Tree.tags t tag in + let first = choose_jump_down tags_below ca da a + and next = choose_jump_next tags_after sa fa a in + let v = (fl_list,llist,rlist,first,next) in + Hashtbl.add td_trans (tag, hpl slist) v; v + + let merge rb rb1 rb2 mark t res1 res2 = + if rb + then + let res1 = if rb1 then res1 else RS.empty + and res2 = if rb2 then res2 else RS.empty + in + if mark then RS.cons t (RS.concat res1 res2) + else RS.concat res1 res2 + else RS.empty + + let top_down ?(noright=false) a t slist ctx slot_size = + let pempty = empty_size slot_size in + let eval_fold2_slist fll sl1 sl2 res1 res2 t = + let res = Array.copy res1 in + let rec fold l1 l2 fll i aq = match l1,l2,fll with + | Cons(s1,_,ll1), Cons(s2, _ ,ll2),fl::fll -> + let r',rb,rb1,rb2,mark = eval_formlist s1 s2 fl in + let _ = res.(i) <- merge rb rb1 rb2 mark t res1.(i) res2.(i) + in + fold ll1 ll2 fll (i+1) (cons r' aq) + | Nil, Nil,[] -> aq,res | _ -> assert false + in + fold sl1 sl2 fll 0 Nil + in + let null_result() = (pempty,Array.make slot_size RS.empty) in + let rec loop t slist ctx = + if Tree.is_nil t then null_result() + else + let tag = Tree.tag t in + let fl_list,llist,rlist,first,next = get_trans slist tag a t in + let sl1,res1 = loop (first t) llist t in + let sl2,res2 = loop (next t ctx) rlist ctx in + let res = eval_fold2_slist fl_list sl1 sl2 res1 res2 t + in + D_IGNORE_( + register_trace t (slist,(fst res),sl1,sl2,fl_list,first,next,ctx), + res) + in + let loop_no_right t slist ctx = + if Tree.is_nil t then null_result() + else + let tag = Tree.tag t in + let fl_list,llist,rlist,first,next = get_trans slist tag a t in + let sl1,res1 = loop (first t) llist t in + let sl2,res2 = null_result() in + let res = eval_fold2_slist fl_list sl1 sl2 res1 res2 t + in + D_IGNORE_( + register_trace t (slist,(fst res),sl1,sl2,fl_list,first,next,ctx), + res) + in + (if noright then loop_no_right else loop) t slist ctx + + + let run_top_down a t = + let init = cons a.init Nil in + let _,res = top_down a t init t 1 + in + D_IGNORE_( + output_trace a t "trace.html" + (RS.fold (fun t a -> IntSet.add (Tree.id t) a) res.(0) IntSet.empty), + res.(0)) + ;; + + module Configuration = + struct + module Ptss = Set.Make(StateSet) + module IMap = Map.Make(StateSet) + type t = { hash : int; + sets : Ptss.t; + results : RS.t IMap.t } + let empty = { hash = 0; + sets = Ptss.empty; + results = IMap.empty; + } + let is_empty c = Ptss.is_empty c.sets + let add c s r = + if Ptss.mem s c.sets then + { c with results = IMap.add s (RS.concat r (IMap.find s c.results)) c.results} + else + { hash = HASHINT2(c.hash,Ptset.Int.hash s); + sets = Ptss.add s c.sets; + results = IMap.add s r c.results + } - in - Format.fprintf outf "digraph G {\n"; - ignore(aux t 0); - Format.fprintf outf "}\n%!"; - close_out out; - ignore(Sys.command "dot -Tsvg debug_trace.dot > debug_trace.svg") -END - - - - module HFEval = Hashtbl.Make( - struct - type t = int*Ptset.t*Ptset.t - let equal (a,b,c) (d,e,f) = - a==d && (Ptset.equal b e) && (Ptset.equal c f) - let hash (a,b,c) = - a+17*(Ptset.hash b) + 31*(Ptset.hash c) - end) - - let hfeval = HFEval.create 4097 - - - let eval_form_bool f s1 s2 = - let rec eval f = match f.pos with - | Atom(`Left,b,q) -> if b == (Ptset.mem q s1) then (true,true,false) else false,false,false - | Atom(`Right,b,q) -> if b == (Ptset.mem q s2) then (true,false,true) else false,false,false - (* test some inlining *) - | True -> true,true,true - | False -> false,false,false - | _ -> - try - HFEval.find hfeval (f.fid,s1,s2) - with - | Not_found -> let r = - match f.pos with - | Or(f1,f2) -> - let b1,rl1,rr1 = eval f1 + let pr fmt c = Format.fprintf fmt "{"; + Ptss.iter (fun s -> StateSet.print fmt s; + Format.fprintf fmt " ") c.sets; + Format.fprintf fmt "}\n%!"; + IMap.iter (fun k d -> + StateSet.print fmt k; + Format.fprintf fmt "-> %i\n" (RS.length d)) c.results; + Format.fprintf fmt "\n%!" + + let merge c1 c2 = + let acc1 = IMap.fold (fun s r acc -> + IMap.add s + (try + RS.concat r (IMap.find s acc) + with + | Not_found -> r) acc) c1.results IMap.empty + in + let imap = + IMap.fold (fun s r acc -> + IMap.add s + (try + RS.concat r (IMap.find s acc) + with + | Not_found -> r) acc) c2.results acc1 + in + let h,s = + Ptss.fold + (fun s (ah,ass) -> (HASHINT2(ah,Ptset.Int.hash s), + Ptss.add s ass)) + (Ptss.union c1.sets c2.sets) (0,Ptss.empty) + in + { hash = h; + sets =s; + results = imap } + + end + + let h_fold = Hashtbl.create 511 + + let fold_f_conf t slist fl_list conf dir= + let rec loop sl fl acc = + match sl,fl with + |Nil,[] -> acc + | Cons(s,hs,sll), formlist::fll -> + let r',rb,rb1,rb2,mark = + try + Hashtbl.find h_fold (hs,Formlist.hash formlist,dir) + with + Not_found -> let res = + if dir then eval_formlist ~memo:false s Ptset.Int.empty formlist + else eval_formlist ~memo:false Ptset.Int.empty s formlist + in (Hashtbl.add h_fold (hs,Formlist.hash formlist,dir) res;res) + in(* + let _ = pr "Evaluating on set (%s) with tree %s=%s" + (if dir then "left" else "right") + (Tag.to_string (Tree.tag t)) + (Tree.dump_node t) ; + StateSet.print fmt (Ptset.Int.elements s); + pr ", formualae (with hash %i): \n" (Formlist.hash formlist); + Formlist.pr fmt formlist; + pr "result is "; + StateSet.print fmt (Ptset.Int.elements r'); + pr " %b %b %b %b \n%!" rb rb1 rb2 mark ; + in *) + if rb && ((dir&&rb1)|| ((not dir) && rb2)) + then + let acc = + let old_r = + try Configuration.IMap.find s conf.Configuration.results + with Not_found -> RS.empty in - if b1 && rl1 && rr1 then (true,true,true) - else - let b2,rl2,rr2 = eval f2 - in - let rl1,rr1 = if b1 then rl1,rr1 else false,false - and rl2,rr2 = if b2 then rl2,rr2 else false,false - in (b1 || b2, rl1||rl2,rr1||rr2) - | And(f1,f2) -> - let b1,rl1,rr1 = eval f1 in - if b1 && rl1 && rr1 then (true,true,true) - else if b1 - then let b2,rl2,rr2 = eval f2 in - if b2 then (true,rl1||rl2,rr1||rr2) - else (false,false,false) - else (false,false,false) - | _ -> assert false - in - HFEval.add hfeval (f.fid,s1,s2) r; - r - in eval f - - - module HFEvalDir = Hashtbl.Make( - struct - type t = int*Ptset.t*[`Left | `Right ] - let equal (a,b,c) (d,e,f) = - a==d && (Ptset.equal b e) && (c = f) - let hash_dir = function `Left -> 7919 - | `Right -> 3517 - - let hash (a,b,c) = - a+17*(Ptset.hash b) + 31*(hash_dir c) - end) - - let hfeval_dir = HFEvalDir.create 4097 - - - let eval_dir dir f s = - let rec eval f = match f.pos with - | Atom(d,b,q) when d = dir -> if b == (Ptset.mem q s) then true_ else false_ - | Atom(_,b,q) -> f - (* test some inlining *) - | True -> true_ - | False -> false_ - | _ -> - try - HFEvalDir.find hfeval_dir (f.fid,s,dir) + Configuration.add acc r' (if mark then RS.cons t old_r else old_r) + in + loop sll fll acc + else loop sll fll acc + | _ -> assert false + in + loop slist fl_list Configuration.empty + + let h_trans = Hashtbl.create 4096 + + let get_up_trans slist ptag a tree = + let key = (HASHINT2(hpl slist,Tag.hash ptag)) in + try + Hashtbl.find h_trans key + with + | Not_found -> + let f_list = + Hashtbl.fold (fun q l acc -> + List.fold_left (fun fl_acc (ts,t) -> + if TagSet.mem ptag ts then Formlist.add t fl_acc + else fl_acc) + + acc l) + a.trans Formlist.empty + in + let res = fold_pl (fun _ _ acc -> f_list::acc) slist [] + in + (Hashtbl.add h_trans key res;res) + + + let h_tdconf = Hashtbl.create 511 + let rec bottom_up a tree conf next jump_fun root dotd init accu = + if (not dotd) && (Configuration.is_empty conf ) then +(* let _ = pr "Returning early from %s, with accu %i, next is %s\n%!" + (Tree.dump_node tree) (Obj.magic accu) (Tree.dump_node next) + in *) + accu,conf,next + else +(* let _ = + pr "Going bottom up for tree with tag %s configuration is" + (if Tree.is_nil tree then "###" else Tag.to_string (Tree.tag tree)); + Configuration.pr fmt conf + in *) + let below_right = Tree.is_below_right tree next in + (* let _ = Format.fprintf Format.err_formatter "below_right %s %s = %b\n%!" + (Tree.dump_node tree) (Tree.dump_node next) below_right + in *) + let accu,rightconf,next_of_next = + if below_right then (* jump to the next *) +(* let _ = pr "Jumping to %s tag %s\n%!" (Tree.dump_node next) (Tag.to_string (Tree.tag next)) in *) + bottom_up a next conf (jump_fun next) jump_fun (Tree.next_sibling tree) true init accu + else accu,Configuration.empty,next + in +(* let _ = if below_right then pr "Returning from jump to next = %s\n" (Tree.dump_node next)in *) + let sub = + if dotd then + if below_right then (* only recurse on the left subtree *) +(* let _ = pr "Topdown on left subtree\n%!" in *) + prepare_topdown a tree true + else +(* let _ = pr "Topdown on whole tree\n%!" in *) + prepare_topdown a tree false + else conf + in + let conf,next = + (Configuration.merge rightconf sub, next_of_next) + in + if Tree.equal tree root then +(* let _ = pr "Stopping at root, configuration after topdown is:" ; + Configuration.pr fmt conf; + pr "\n%!" + in *) accu,conf,next + else + let parent = Tree.binary_parent tree in + let ptag = Tree.tag parent in + let dir = Tree.is_left tree in + let slist = Configuration.Ptss.fold (fun e a -> cons e a) conf.Configuration.sets Nil in + let fl_list = get_up_trans slist ptag a parent in + let slist = rev_pl (slist) in +(* let _ = pr "Current conf is : %s " (Tree.dump_node tree); + Configuration.pr fmt conf; + pr "\n" + in *) + let newconf = fold_f_conf parent slist fl_list conf dir in +(* let _ = pr "New conf before pruning is (dir=%b):" dir; + Configuration.pr fmt newconf ; + pr "accu is %i\n" (RS.length accu); + in *) + let accu,newconf = Configuration.IMap.fold (fun s res (ar,nc) -> + if Ptset.Int.intersect s init then + ( RS.concat res ar ,nc) + else (ar,Configuration.add nc s res)) + (newconf.Configuration.results) (accu,Configuration.empty) + in +(* let _ = pr "New conf after pruning is (dir=%b):" dir; + Configuration.pr fmt newconf ; + pr "accu is %i\n" (RS.length accu); + in *) + bottom_up a parent newconf next jump_fun root false init accu + + and prepare_topdown a t noright = + let tag = Tree.tag t in +(* pr "Going top down on tree with tag %s = %s " + (if Tree.is_nil t then "###" else (Tag.to_string(Tree.tag t))) (Tree.dump_node t); *) + let r = + try + Hashtbl.find h_tdconf tag with | Not_found -> - let r = - match f.pos with - | Or(f1,f2) -> - let f1 = eval f1 - in - if is_true f1 then true_ - else if is_false f1 then eval f2 - else or_ f1 f2 - | And(f1,f2) -> - let f1 = eval f1 in - if is_false f1 then false_ - else if is_true f1 then eval f2 - else and_ f1 f2 - | _ -> assert false - in - HFEvalDir.add hfeval_dir (f.fid,s,dir) r; - r - - in eval f - - - - let fstate_pool = Hashtbl.create 11 - - let merge_pred a b = match a,b with - | Some(f1), Some(f2) -> Some(fun x -> f1 x || f2 x) - | None,None -> None - | None,Some(_) -> b - | Some(_),None -> a - - let acc_pred p l1 l2 = match p with - | `Left _ -> p::l1,l2 - | `Right _ -> l1,p::l2 - | _ -> l1,l2 - - - let merge_trans t a tag q acc = - List.fold_left (fun (accf,accm,acchtrue) (ts,(m,f,pred)) -> - if TagSet.mem tag ts - then - let tmpf,hastrue = - if is_true f then - let newfinal = - try Hashtbl.find fstate_pool f.fid with - | Not_found -> let s = mk_state() in - a.states <- Ptset.add s a.states; - a.final <- Ptset.add s a.final; - Hashtbl.add fstate_pool f.fid s;s - in - (atom_ `Left true newfinal),true - else f,false in - (or_ tmpf accf,accm||m,acchtrue||hastrue) - else (accf,accm,acchtrue) - ) acc (Hashtbl.find a.phi q) - - let miss = ref 0 - let call = ref 0 - let get_trans t a tag r = - try - let mark,f,predl,has_true = - HTagSet.find a.sigma (r,tag) - in f.st,f,mark,has_true,r,predl - with - Not_found -> - let f,mark,has_true,accq = - Ptset.fold (fun q (accf,accm,acchtrue,accq) -> - let naccf,naccm,nacctrue = - merge_trans t a tag q (accf,accm,acchtrue ) - in - if is_false naccf then (naccf,naccm,nacctrue,accq) - else (naccf,naccm,nacctrue,Ptset.add q accq) - ) - r (false_,false,false,Ptset.empty) + let res = Hashtbl.fold (fun q l acc -> + if List.exists (fun (ts,_) -> TagSet.mem tag ts) l + then Ptset.Int.add q acc + else acc) a.trans Ptset.Int.empty + in Hashtbl.add h_tdconf tag res;res + in +(* let _ = pr ", among "; + StateSet.print fmt (Ptset.Int.elements r); + pr "\n%!"; + in *) + let r = cons r Nil in + let set,res = top_down (~noright:noright) a t r t 1 in + let set = match set with + | Cons(x,_,Nil) ->x + | _ -> assert false + in +(* pr "Result of topdown run is %!"; + StateSet.print fmt (Ptset.Int.elements set); + pr ", number is %i\n%!" (RS.length res.(0)); *) + Configuration.add Configuration.empty set res.(0) + + + + let run_bottom_up a t k = + let trlist = Hashtbl.find a.trans (Ptset.Int.choose a.init) + in + let init = List.fold_left + (fun acc (_,t) -> + let _,_,f,_ = Transition.node t in + let _,_,l = fst ( Formula.st f ) in + Ptset.Int.union acc l) + Ptset.Int.empty trlist + in + let tree1,jump_fun = + match k with + | `TAG (tag) -> + (*Tree.tagged_lowest t tag, fun tree -> Tree.tagged_next tree tag*) + (Tree.tagged_desc tag t, fun tree -> Tree.tagged_foll_ctx tag tree t) + | `CONTAINS(_) -> (Tree.text_below t,fun tree -> Tree.text_next tree t) + | _ -> assert false + in + let tree2 = jump_fun tree1 in + let rec loop tree next acc = +(* let _ = pr "\n_________________________\nNew iteration\n" in + let _ = pr "Jumping to %s\n%!" (Tree.dump_node tree) in *) + let acc,conf,next_of_next = bottom_up a tree + Configuration.empty next jump_fun (Tree.root tree) true init acc in - HTagSet.add a.sigma (accq,tag) (mark,f,([],[]),has_true); - f.st,f,mark,has_true,accq,([],[]) - - - let check_pred l t = true (*l = [] || - List.exists (function p -> - match p with - `Left f | `Right f -> f t - | _ -> assert false) l - *) - - - let rec accepting_among2 a t r acc = - let orig = r in - let rest = Ptset.inter r a.final in - let r = Ptset.diff r rest in - if Ptset.is_empty r then rest,acc else - if (not (Tree.is_node t)) - then - orig,acc - else - let tag = Tree.tag t in - let t1 = Tree.first_child t - and t2 = Tree.next_sibling t in - let (r1,r2),formula,mark,has_true,r,_ = get_trans t a tag r - in - let s1,res1 = accepting_among2 a t1 r1 acc + (* let _ = pr "End of first iteration, conf is:\n%!"; + Configuration.pr fmt conf + in *) + let acc = Configuration.IMap.fold + ( fun s res acc -> if Ptset.Int.intersect init s + then RS.concat res acc else acc) conf.Configuration.results acc in - let formula = eval_dir `Left formula s1 in - if is_false formula then rest,acc - else - if is_true formula then (* tail call equivalent to a top down *) - accepting_among2 a t2 orig (if mark then TS.append t res1 else res1) - else - let s2,res2 = accepting_among2 a t2 r2 res1 - in - let formula = eval_dir `Right formula s2 - in - if is_false formula then rest,res1 - else - orig,(if mark then TS.append t (res2) - else res2) - - - let run a t = - let st,res = accepting_among2 a t a.init TS.empty in - let b = Ptset.is_empty (st) in - if b then TS.empty - else - res - end + if Tree.is_nil next_of_next (*|| Tree.equal next next_of_next *)then + acc + else loop next_of_next (jump_fun next_of_next) acc + in + loop tree1 tree2 RS.empty + + + end + + let top_down_count a t = let module RI = Run(Integer) in Integer.length (RI.run_top_down a t) + let top_down a t = let module RI = Run(IdSet) in (RI.run_top_down a t) + let bottom_up_count a t k = let module RI = Run(Integer) in Integer.length (RI.run_bottom_up a t k) + +