X-Git-Url: http://git.nguyen.vg/gitweb/?a=blobdiff_plain;f=ata.ml;h=f32005d412e95a023ece1a36318d52f1202d2896;hb=25dd7fcc77c2188732d96d5ff98d759bb81737cb;hp=bb38863bad0285e25b696f1dfe85528557bf2854;hpb=22e128466565745a4e74f3b9823e7884ee5c6157;p=SXSI%2Fxpathcomp.git diff --git a/ata.ml b/ata.ml index bb38863..f32005d 100644 --- a/ata.ml +++ b/ata.ml @@ -1,429 +1,380 @@ INCLUDE "debug.ml" INCLUDE "utils.ml" + + type jump_kind = [ `TAG of Tag.t | `CONTAINS of string | `NOTHING ] -let cpt_trans = ref 0 -let miss_trans = ref 0 -let cpt_eval = ref 0 -let miss_eval = ref 0 - -let gen_id = - let id = ref (-1) in - fun () -> incr id;!id - -let h_union = Hashtbl.create 4097 - -let pt_cup s1 s2 = - (* special case, since this is a union we want hash(s1,s2) = hash(s2,s1) *) - let x = Ptset.hash s1 - and y = Ptset.hash s2 in - let h = if x < y then HASHINT2(x,y) else HASHINT2(y,x) in - try - Hashtbl.find h_union h - with - | Not_found -> let s = Ptset.union s1 s2 - in - Hashtbl.add h_union h s;s -module State = struct +(* Todo : move elsewhere *) +external vb : bool -> int = "%identity" +module State : +sig + include Sigs.T with type t = int + val make : unit -> t +end = +struct type t = int - let mk = gen_id + let make = + let id = ref (-1) in + fun () -> incr id;!id + let compare = (-) + let equal = (==) + external hash : t -> int = "%identity" + let print fmt x = Format.fprintf fmt "%i" x + let dump fmt x = print fmt x + let check x = + if x < 0 then failwith (Printf.sprintf "State: Assertion %i < 0 failed" x) +end +module StateSet = struct + include Ptset.Int + let print ppf s = + Format.pp_print_string ppf "{ "; + iter (fun i -> Format.fprintf ppf "%i " i) s; + Format.pp_print_string ppf "}"; + Format.pp_print_flush ppf () end -let mk_state = State.mk + +module Formula = +struct + type 'hcons expr = + | False | True + | Or of 'hcons * 'hcons + | And of 'hcons * 'hcons + | Atom of ([ `Left | `Right | `LLeft | `RRight ]*bool*State.t) + type 'hcons node = { + pos : 'hcons expr; + mutable neg : 'hcons; + st : (StateSet.t*StateSet.t*StateSet.t)*(StateSet.t*StateSet.t*StateSet.t); + size: int; (* Todo check if this is needed *) + } + + external hash_const_variant : [> ] -> int = "%identity" + module rec HNode : Hcons.S with type data = Node.t = Hcons.Make (Node) + and Node : Hashtbl.HashedType with type t = HNode.t node = + struct + type t = HNode.t node + let equal x y = x.size == y.size && + match x.pos,y.pos with + | False,False + | True,True -> true + | Or(xf1,xf2),Or(yf1,yf2) + | And(xf1,xf2),And(yf1,yf2) -> (HNode.equal xf1 yf1) && (HNode.equal xf2 yf2) + | Atom(d1,p1,s1), Atom(d2,p2,s2) -> d1 == d2 && (p1==p2) && s1 == s2 + | _ -> false + let hash f = + match f.pos with + | False -> 0 + | True -> 1 + | Or (f1,f2) -> HASHINT3(PRIME2,HNode.hash f1,HNode.hash f2) + | And (f1,f2) -> HASHINT3(PRIME3,HNode.hash f1,HNode.hash f2) + | Atom(d,p,s) -> HASHINT4(PRIME4,hash_const_variant d,vb p,s) + end -type state = State.t + type t = HNode.t + let hash = HNode.hash + let uid = HNode.uid + let equal = HNode.equal + let expr f = (HNode.node f).pos + let st f = (HNode.node f ).st + let size f = (HNode.node f).size + + let prio f = + match expr f with + | True | False -> 10 + | Atom _ -> 8 + | And _ -> 6 + | Or _ -> 1 + + let rec print ?(parent=false) ppf f = + if parent then Format.fprintf ppf "("; + let _ = match expr f with + | True -> Format.fprintf ppf "T" + | False -> Format.fprintf ppf "F" + | And(f1,f2) -> + print ~parent:(prio f > prio f1) ppf f1; + Format.fprintf ppf " ∧ "; + print ~parent:(prio f > prio f2) ppf f2; + | Or(f1,f2) -> + (print ppf f1); + Format.fprintf ppf " ∨ "; + (print ppf f2); + | Atom(dir,b,s) -> Format.fprintf ppf "%s%s[%i]" + (if b then "" else "¬") + (match dir with + | `Left -> "↓₁" + | `Right -> "↓₂" + | `LLeft -> "⇓₁" + | `RRight -> "⇓₂") s + in + if parent then Format.fprintf ppf ")" + + let print ppf f = print ~parent:false ppf f + + let is_true f = (expr f) == True + let is_false f = (expr f) == False + + + let cons pos neg s1 s2 size1 size2 = + let nnode = HNode.make { pos = neg; neg = (Obj.magic 0); st = s2; size = size2 } in + let pnode = HNode.make { pos = pos; neg = nnode ; st = s1; size = size1 } + in + (HNode.node nnode).neg <- pnode; (* works because the neg field isn't taken into + account for hashing ! *) + pnode,nnode + + let empty_triple = StateSet.empty,StateSet.empty,StateSet.empty + let empty_hex = empty_triple,empty_triple + let true_,false_ = cons True False empty_hex empty_hex 0 0 + let atom_ d p s = + let si = StateSet.singleton s in + let ss = match d with + | `Left -> (si,StateSet.empty,si),empty_triple + | `Right -> empty_triple,(si,StateSet.empty,si) + | `LLeft -> (StateSet.empty,si,si),empty_triple + | `RRight -> empty_triple,(StateSet.empty,si,si) + in fst (cons (Atom(d,p,s)) (Atom(d,not p,s)) ss ss 1 1) + + let not_ f = (HNode.node f).neg + let union_hex ((l1,ll1,lll1),(r1,rr1,rrr1)) ((l2,ll2,lll2),(r2,rr2,rrr2)) = + (StateSet.mem_union l1 l2 ,StateSet.mem_union ll1 ll2,StateSet.mem_union lll1 lll2), + (StateSet.mem_union r1 r2 ,StateSet.mem_union rr1 rr2,StateSet.mem_union rrr1 rrr2) + + let merge_states f1 f2 = + let sp = + union_hex (st f1) (st f2) + and sn = + union_hex (st (not_ f1)) (st (not_ f2)) + in + sp,sn + let order f1 f2 = if uid f1 < uid f2 then f2,f1 else f1,f2 - -type formula_expr = - | False | True - | Or of formula * formula - | And of formula * formula - | Atom of ([ `Left | `Right | `LLeft | `RRight ]*bool*state) -and formula = { fid: int; - fkey : int; - pos : formula_expr; - neg : formula; - st : (Ptset.t*Ptset.t*Ptset.t)*(Ptset.t*Ptset.t*Ptset.t); - size: int; - } - -external hash_const_variant : [> ] -> int = "%identity" -external vb : bool -> int = "%identity" + let or_ f1 f2 = + (* Tautologies: x|x, x|not(x) *) -let hash_node_form t = match t with - | False -> 0 - | True -> 1 - | And(f1,f2) -> (2+17*f1.fkey + 37*f2.fkey) (*land max_int *) - | Or(f1,f2) -> (3+101*f1.fkey + 253*f2.fkey) (*land max_int *) - | Atom(v,b,s) -> HASHINT3(hash_const_variant v,(3846*(vb b) +257),s) + if equal f1 f2 then f1 else + if equal f1 (not_ f2) then true_ else - + (* simplification *) + if is_true f1 || is_true f2 then true_ else + if is_false f1 && is_false f2 then false_ else + if is_false f1 then f2 else + if is_false f2 then f1 else -module FormNode = -struct - type t = formula + (* commutativity of | *) - let hash t = t.fkey - let equal f1 f2 = - if f1.fid == f2.fid || f1.fkey == f2.fkey || f1.pos == f2.pos then true - else - match f1.pos,f2.pos with - | False,False | True,True -> true - | Atom(d1,b1,s1), Atom(d2,b2,s2) when (b1==b2) && (s1==s2) && (d1 = d2) -> true - | Or(g1,g2),Or(h1,h2) - | And(g1,g2),And(h1,h2) -> g1.fid == h1.fid && g2.fid == h2.fid - | _ -> false + let f1,f2 = order f1 f2 in + let psize = (size f1) + (size f2) in + let nsize = (size (not_ f1)) + (size (not_ f2)) in + let sp,sn = merge_states f1 f2 in + fst (cons (Or(f1,f2)) (And(not_ f1,not_ f2)) sp sn psize nsize) + + + let and_ f1 f2 = -end -module WH = Weak.Make(FormNode) - -let f_pool = WH.create 107 - -let empty_triple = Ptset.empty,Ptset.empty,Ptset.empty -let empty_hex = empty_triple,empty_triple - -let true_,false_ = - let rec t = { fid = 1; pos = True; fkey=1; neg = f ; st = empty_hex; size =1; } - and f = { fid = 0; pos = False; fkey=0; neg = t; st = empty_hex; size = 1; } - in - WH.add f_pool f; - WH.add f_pool t; - t,f - -let is_true f = f.fid == 1 -let is_false f = f.fid == 0 - - -let cons pos neg s1 s2 size1 size2 = - let rec pnode = - { fid = gen_id (); - fkey = hash_node_form pos; - pos = pos; - neg = nnode; - st = s1; - size = size1;} - and nnode = { - fid = gen_id (); - pos = neg; - fkey = hash_node_form neg; - neg = pnode; - st = s2; - size = size2; - } - in - (WH.merge f_pool pnode),(WH.merge f_pool nnode) - -let atom_ d p s = - let si = Ptset.singleton s in - let ss = match d with - | `Left -> (si,Ptset.empty,si),empty_triple - | `Right -> empty_triple,(si,Ptset.empty,si) - | `LLeft -> (Ptset.empty,si,si),empty_triple - | `RRight -> empty_triple,(Ptset.empty,si,si) - in fst (cons (Atom(d,p,s)) (Atom(d,not p,s)) ss ss 1 1) - -let union_hex ((l1,ll1,lll1),(r1,rr1,rrr1)) ((l2,ll2,lll2),(r2,rr2,rrr2)) = - (pt_cup l1 l2 ,pt_cup ll1 ll2,pt_cup lll1 lll2), - (pt_cup r1 r2 ,pt_cup rr1 rr2,pt_cup rrr1 rrr2) - -let merge_states f1 f2 = - let sp = - union_hex f1.st f2.st - and sn = - union_hex f1.neg.st f2.neg.st - in - sp,sn - -let full_or_ f1 f2 = - let f1,f2 = if f1.fid < f2.fid then f2,f1 else f1,f2 in - let sp,sn = merge_states f1 f2 in - let psize = f1.size + f2.size in - let nsize = f1.neg.size + f2.neg.size in - fst (cons (Or(f1,f2)) (And(f1.neg,f2.neg)) sp sn psize nsize ) - -let or_ f1 f2 = - let f1,f2 = if f1.fid < f2.fid then f2,f1 else f1,f2 in - if is_true f1 || is_true f2 then true_ - else if is_false f1 && is_false f2 then false_ - else if is_false f1 then f2 - else if is_false f2 then f1 - else - let psize = f1.size + f2.size in - let nsize = f1.neg.size + f2.neg.size in - let sp,sn = merge_states f1 f2 in - fst (cons (Or(f1,f2)) (And(f1.neg,f2.neg)) sp sn psize nsize) - - - -let and_ f1 f2 = - let f1,f2 = if f1.fid < f2.fid then f2,f1 else f1,f2 in - if is_true f1 && is_true f2 then true_ - else if is_false f1 || is_false f2 then false_ - else if is_true f1 then f2 - else if is_true f2 then f1 - else - let psize = f1.size + f2.size in - let nsize = f1.neg.size + f2.neg.size in - let sp,sn = merge_states f1 f2 in - fst (cons (And(f1,f2)) (Or(f1.neg,f2.neg)) sp sn psize nsize) - + (* Tautologies: x&x, x¬(x) *) -let not_ f = f.neg + if equal f1 f2 then f1 else + if equal f1 (not_ f2) then false_ else -let k_hash (s,t) = HASHINT2(Ptset.hash s,Tag.hash t) + (* simplifications *) -module HTagSetKey = -struct - type t = Ptset.t*Tag.t - let equal (s1,s2) (t1,t2) = (s2 == t2) && Ptset.equal s1 t1 - let hash = k_hash + if is_true f1 && is_true f2 then true_ else + if is_false f1 || is_false f2 then false_ else + if is_true f1 then f2 else + if is_true f2 then f1 else + + (* commutativity of & *) + + let f1,f2 = order f1 f2 in + let psize = (size f1) + (size f2) in + let nsize = (size (not_ f1)) + (size (not_ f2)) in + let sp,sn = merge_states f1 f2 in + fst (cons (And(f1,f2)) (Or(not_ f1,not_ f2)) sp sn psize nsize) + module Infix = struct + let ( +| ) f1 f2 = or_ f1 f2 + let ( *& ) f1 f2 = and_ f1 f2 + let ( *+ ) d s = atom_ d true s + let ( *- ) d s = atom_ d false s + end end + +module Transition = struct + + type node = State.t*bool*Formula.t*bool + include Hcons.Make(struct + type t = node + let hash (s,m,f,b) = HASHINT4(s,Formula.uid f,vb m,vb b) + let equal (s,b,f,m) (s',b',f',m') = + s == s' && b==b' && m==m' && Formula.equal f f' + end) + + let print ppf f = let (st,mark,form,b) = node f in + Format.fprintf ppf "%i %s" st (if mark then "⇒" else "→"); + Formula.print ppf form; + Format.fprintf ppf "%s%!" (if b then " (b)" else "") -module HTagSet = Hashtbl.Make(HTagSetKey) -type skiplist = Nothing | All - | Zero of skiplist - | One of skiplist | Two of skiplist | Three of skiplist - | Four of skiplist | Five of skiplist | Six of skiplist - | Seven of skiplist | Eight of skiplist | Nine of skiplist + module Infix = struct + let ( ?< ) x = x + let ( >< ) state (l,mark) = state,(l,mark,false) + let ( ><@ ) state (l,mark) = state,(l,mark,true) + let ( >=> ) (state,(label,mark,bur)) form = (state,label,(make (state,mark,form,bur))) + end +end + +module SetTagKey = +struct + type t = Ptset.Int.t*Tag.t + let equal (s1,t1) (s2,t2) = (t1 == t2) && Ptset.Int.equal s1 s2 + let hash (s,t) = HASHINT2(Ptset.Int.hash s,Tag.hash t) +end + +module TransTable = Hashtbl +module CachedTransTable = Hashtbl.Make(SetTagKey) -type formlist = Nil | Cons of state*formula*int*bool*formlist +module Formlist = struct + include Ptset.Make(Transition) + let print ppf fl = + iter (fun t -> Transition.print ppf t; Format.pp_print_newline ppf ()) fl +end + type 'a t = { id : int; - mutable states : Ptset.t; - init : Ptset.t; - mutable final : Ptset.t; - universal : Ptset.t; - starstate : Ptset.t option; + mutable states : Ptset.Int.t; + init : Ptset.Int.t; + starstate : Ptset.Int.t option; (* Transitions of the Alternating automaton *) - phi : (state,(TagSet.t*(bool*formula*bool)) list) Hashtbl.t; - sigma : (int,('a t -> Tree.t -> Tree.t -> Ptset.t*'a)) Hashtbl.t; -} - - module Pair (X : Set.OrderedType) (Y : Set.OrderedType) = - struct - type t = X.t*Y.t - let compare (x1,y1) (x2,y2) = - let r = X.compare x1 x2 in - if r == 0 then Y.compare y1 y2 - else r - end + trans : (State.t,(TagSet.t*Transition.t) list) Hashtbl.t; + query_string: string; + } - module PL = Set.Make (Pair (Ptset) (Ptset)) - - - let pr_st ppf l = Format.fprintf ppf "{"; - begin - match l with - | [] -> () - | [s] -> Format.fprintf ppf " %i" s - | p::r -> Format.fprintf ppf " %i" p; - List.iter (fun i -> Format.fprintf ppf "; %i" i) r - end; - Format.fprintf ppf " }" - let rec pr_frm ppf f = match f.pos with - | True -> Format.fprintf ppf "⊤" - | False -> Format.fprintf ppf "⊥" - | And(f1,f2) -> - Format.fprintf ppf "("; - (pr_frm ppf f1); - Format.fprintf ppf ") ∧ ("; - (pr_frm ppf f2); - Format.fprintf ppf ")" - | Or(f1,f2) -> - (pr_frm ppf f1); - Format.fprintf ppf " ∨ "; - (pr_frm ppf f2); - | Atom(dir,b,s) -> Format.fprintf ppf "%s%s[%i]" - (if b then "" else "¬") - (match dir with - | `Left -> "↓₁" - | `Right -> "↓₂" - | `LLeft -> "⇓₁" - | `RRight -> "⇓₂") s - - let dump ppf a = - Format.fprintf ppf "Automaton (%i) :\n" a.id; - Format.fprintf ppf "States : "; pr_st ppf (Ptset.elements a.states); - Format.fprintf ppf "\nInitial states : "; pr_st ppf (Ptset.elements a.init); - Format.fprintf ppf "\nFinal states : "; pr_st ppf (Ptset.elements a.final); - Format.fprintf ppf "\nUniversal states : "; pr_st ppf (Ptset.elements a.universal); - Format.fprintf ppf "\nAlternating transitions :\n------------------------------\n"; - let l = Hashtbl.fold (fun k t acc -> - (List.map (fun (t,(m,f,p)) -> (t,k),(m,f,p)) t)@ acc) a.phi [] in - let l = List.sort (fun ((tsx,x),_) ((tsy,y),_) -> if x-y == 0 then TagSet.compare tsx tsy else x-y) l in - List.iter (fun ((ts,q),(b,f,_)) -> - - let s = - if TagSet.is_finite ts - then "{" ^ (TagSet.fold (fun t a -> a ^ " '" ^ (Tag.to_string t)^"'") ts "") ^" }" - else let cts = TagSet.neg ts in - if TagSet.is_empty cts then "*" else - (TagSet.fold (fun t a -> a ^ " " ^ (Tag.to_string t)) cts "*\\{" - )^ "}" - in - Format.fprintf ppf "(%s,%i) %s " s q (if b then "=>" else "->"); - pr_frm ppf f; - Format.fprintf ppf "\n")l; - - Format.fprintf ppf "NFA transitions :\n------------------------------\n"; -(* HTagSet.iter (fun (qs,t) (disp,b,_,flist,_,_) -> - let (ls,lls,_),(rs,rrs,_) = - List.fold_left (fun ((a1,b1,c1),(a2,b2,c2)) (_,f) -> - let (x1,y1,z1),(x2,y2,z2) = f.st in - ((Ptset.union x1 a1),(Ptset.union y1 b1),(Ptset.union c1 z1)), - ((Ptset.union x2 a2),(Ptset.union y2 b2),(Ptset.union c2 z2))) - ((Ptset.empty,Ptset.empty,Ptset.empty), - (Ptset.empty,Ptset.empty,Ptset.empty)) - flist - in - pr_st ppf (Ptset.elements qs); - Format.fprintf ppf ",%s %s " (Tag.to_string t) (if b then "=>" else "->"); - List.iter (fun (q,f) -> - Format.fprintf ppf "\n%i," q; - pr_frm ppf f) flist; - Format.fprintf ppf "\nleft="; - pr_st ppf (Ptset.elements ls); - Format.fprintf ppf " , "; - pr_st ppf (Ptset.elements lls); - Format.fprintf ppf ", right="; - pr_st ppf (Ptset.elements rs); - Format.fprintf ppf ", "; - pr_st ppf (Ptset.elements rrs); - Format.fprintf ppf ", first=%s, next=%s\n\n" disp.flabel disp.nlabel; - ) a.sigma; *) - Format.fprintf ppf "=======================================\n%!" + +let dump ppf a = + Format.fprintf ppf "Automaton (%i) :\n" a.id; + Format.fprintf ppf "States : "; StateSet.print ppf a.states; + Format.fprintf ppf "\nInitial states : "; StateSet.print ppf a.init; + Format.fprintf ppf "\nAlternating transitions :\n"; + let l = Hashtbl.fold (fun k t acc -> + (List.map (fun (ts,tr) -> (ts,k),Transition.node tr) t) @ acc) a.trans [] in + let l = List.sort (fun ((tsx,x),_) ((tsy,y),_) -> + if y-x == 0 then TagSet.compare tsy tsx else y-x) l in + let maxh,maxt,l_print = + List.fold_left ( + fun (maxh,maxt,l) ((ts,q),(_,b,f,_)) -> + let s = + if TagSet.is_finite ts + then "{" ^ (TagSet.fold (fun t a -> a ^ " '" ^ (Tag.to_string t)^"'") ts "") ^" }" + else let cts = TagSet.neg ts in + if TagSet.is_empty cts then "*" else + (TagSet.fold (fun t a -> a ^ " " ^ (Tag.to_string t)) cts "*\\{" + )^ "}" + in + let s = Printf.sprintf "(%s,%i)" s q in + let s_frm = + Formula.print Format.str_formatter f; + Format.flush_str_formatter() + in + (max (String.length s) maxh, max (String.length s_frm) maxt, + (s,(if b then "⇒" else "→"),s_frm)::l)) (0,0,[]) l + in + Format.fprintf ppf "%s\n%!" (String.make (maxt+maxh+3) '_'); + List.iter (fun (s,m,f) -> let s = s ^ (String.make (maxh-(String.length s)) ' ') in + Format.fprintf ppf "%s %s %s\n" s m f) l_print; + Format.fprintf ppf "%s\n%!" (String.make (maxt+maxh+3) '_') - module Transitions = struct - type t = state*TagSet.t*bool*formula*bool - let ( ?< ) x = x - let ( >< ) state (l,b) = state,(l,b,false) - let ( ><@ ) state (l,b) = state,(l,b,true) - let ( >=> ) (state,(label,mark,pred)) form = (state,label,mark,form,pred) - let ( +| ) f1 f2 = or_ f1 f2 - let ( *& ) f1 f2 = and_ f1 f2 - let ( ** ) d s = atom_ d true s - - - end - type transition = Transitions.t - let equal_trans (q1,t1,m1,f1,_) (q2,t2,m2,f2,_) = - (q1 == q2) && (TagSet.equal t1 t2) && (m1 == m2) (*&& (equal_form f1 f2) *) +module MemoForm = Memoizer.Make( + Hashtbl.Make(struct + type t = Formula.t*(StateSet.t*StateSet.t) + let equal (f1,(s1,t1)) (f2,(s2,t2)) = + Formula.equal f1 f2 && StateSet.equal s1 s2 && StateSet.equal t1 t2 + let hash (f,(s,t)) = + HASHINT3(Formula.uid f ,StateSet.uid s,StateSet.uid t) + end)) - - module HFEval = Hashtbl.Make( - struct - type t = int*Ptset.t*Ptset.t - let equal (a,b,c) (d,e,f) = - a==d && (Ptset.equal b e) && (Ptset.equal c f) - let hash (a,b,c) = - HASHINT3(a,Ptset.hash b,Ptset.hash c) - end) - - - - - let hfeval = HFEval.create 4097 - let eval_form_bool f s1 s2 = - let rec eval f = match f.pos with - (* test some inlining *) - | True -> true,true,true - | False -> false,false,false - | _ -> - try - HFEval.find hfeval (f.fid,s1,s2) - with - | Not_found -> let r = - match f.pos with - | Atom((`Left|`LLeft),b,q) -> - if b == (Ptset.mem q s1) - then (true,true,false) - else false,false,false - | Atom(_,b,q) -> - if b == (Ptset.mem q s2) - then (true,false,true) - else false,false,false - | Or(f1,f2) -> - let b1,rl1,rr1 = eval f1 - in - if b1 && rl1 && rr1 then (true,true,true) - else - let b2,rl2,rr2 = eval f2 - in - let rl1,rr1 = if b1 then rl1,rr1 else false,false - and rl2,rr2 = if b2 then rl2,rr2 else false,false - in (b1 || b2, rl1||rl2,rr1||rr2) - | And(f1,f2) -> - let b1,rl1,rr1 = eval f1 in - if b1 && rl1 && rr1 then (true,true,true) - else if b1 - then let b2,rl2,rr2 = eval f2 in - if b2 then (true,rl1||rl2,rr1||rr2) - else (false,false,false) - else (false,false,false) - | _ -> assert false +module F = Formula + + let eval_form_bool f s1 s2 = + let sets = (s1,s2) in + let eval = MemoForm.make_rec( + fun eval (f,_) -> + match F.expr f with + | F.True -> true,true,true + | F.False -> false,false,false + | F.Atom((`Left|`LLeft),b,q) -> + if b == (StateSet.mem q s1) + then (true,true,false) + else false,false,false + | F.Atom(_,b,q) -> + if b == (StateSet.mem q s2) + then (true,false,true) + else false,false,false + | F.Or(f1,f2) -> + let b1,rl1,rr1 = eval (f1,sets) in - HFEval.add hfeval (f.fid,s1,s2) r; - r - in eval f - - - let form_list_fold_left f acc fl = - let rec loop acc fl = - match fl with - | Nil -> acc - | Cons(s,frm,h,m,fll) -> loop (f acc s frm h m) fll + if b1 && rl1 && rr1 then (true,true,true) else + let b2,rl2,rr2 = eval (f2,sets) in + let rl1,rr1 = if b1 then rl1,rr1 else false,false + and rl2,rr2 = if b2 then rl2,rr2 else false,false + in (b1 || b2, rl1||rl2,rr1||rr2) + + | F.And(f1,f2) -> + let b1,rl1,rr1 = eval (f1,sets) in + if b1 && rl1 && rr1 then (true,true,true) else + if b1 then + let b2,rl2,rr2 = eval (f2,sets) in + if b2 then (true,rl1||rl2,rr1||rr2) else (false,false,false) + else (false,false,false) + ) in - loop acc fl - - let h_formlist = Hashtbl.create 4096 - let rec eval_formlist ?(memo=true) s1 s2 fl = - match fl with - | Nil -> Ptset.empty,false,false,false,false - | Cons(q,f,h,mark,fll) -> - let k = (h,Ptset.hash s1,Ptset.hash s2,mark) - in - - try - if memo then Hashtbl.find h_formlist k - else (raise Not_found) - with - Not_found -> - let s,b',b1',b2',amark = eval_formlist (~memo:memo) s1 s2 fll in - let b,b1,b2 = eval_form_bool f s1 s2 in - let r = if b then (Ptset.add q s, b, b1'||b1,b2'||b2,mark||amark) - else s,b',b1',b2',amark - in(* - Format.fprintf Format.err_formatter "\nEvaluating formula (%i) %i %s" h q (if mark then "=>" else "->"); - pr_frm (Format.err_formatter) f; - Format.fprintf Format.err_formatter " in context "; - pr_st Format.err_formatter (Ptset.elements s1); - Format.fprintf Format.err_formatter ", "; - pr_st Format.err_formatter (Ptset.elements s2); - Format.fprintf Format.err_formatter " result is %b\n%!" b; *) - (Hashtbl.add h_formlist k r;r) - + eval (f,sets) + + + module MemoFormlist = Memoizer.Make( + Hashtbl.Make(struct + type t = Formlist.t*(StateSet.t*StateSet.t) + let equal (f1,(s1,t1)) (f2,(s2,t2)) = + Formlist.equal f1 f2 && StateSet.equal s1 s2 && StateSet.equal t1 t2 + let hash (f,(s,t)) = + HASHINT3(Formlist.uid f ,StateSet.uid s,StateSet.uid t) + end)) + + let eval_formlist ?(memo=true) s1 s2 fl = + let sets = (s1,s2) in + let eval = MemoFormlist.make_rec ( + fun eval (fl,_) -> + if Formlist.is_empty fl + then StateSet.empty,false,false,false,false + else + let f,fll = Formlist.uncons fl in + let q,mark,f,_ = Transition.node f in + let b,b1,b2 = eval_form_bool f s1 s2 in + let s,b',b1',b2',amark = eval (fll,sets) in + if b then (StateSet.add q s, b, b1'||b1,b2'||b2,mark||amark) + else s,b',b1',b2',amark ) + in eval (fl,sets) - let tags_of_state a q = Hashtbl.fold - (fun p l acc -> - if p == q then - List.fold_left - (fun acc (ts,(_,_,aux)) -> - if aux then acc else - TagSet.cup ts acc) acc l - else acc) a.phi TagSet.empty - + let tags_of_state a q = + Hashtbl.fold + (fun p l acc -> + if p == q then List.fold_left + (fun acc (ts,t) -> + let _,_,_,aux = Transition.node t in + if aux then acc else + TagSet.cup ts acc) acc l + + else acc) a.trans TagSet.empty + let tags a qs = - let ts = Ptset.fold (fun q acc -> TagSet.cup acc (tags_of_state a q)) qs TagSet.empty + let ts = Ptset.Int.fold (fun q acc -> TagSet.cup acc (tags_of_state a q)) qs TagSet.empty in if TagSet.is_finite ts then `Positive(TagSet.positive ts) @@ -431,14 +382,13 @@ type 'a t = { let inter_text a b = match b with - | `Positive s -> let r = Ptset.inter a s in (r,Ptset.mem Tag.pcdata r, true) - | `Negative s -> let r = Ptset.diff a s in (r, Ptset.mem Tag.pcdata r, false) + | `Positive s -> let r = Ptset.Int.inter a s in (r,Ptset.Int.mem Tag.pcdata r, true) + | `Negative s -> let r = Ptset.Int.diff a s in (r, Ptset.Int.mem Tag.pcdata r, false) let mk_nil_ctx x _ = Tree.mk_nil x let next_sibling_ctx x _ = Tree.next_sibling x let r_ignore _ x = x - let set_get_tag r t = r := (fun _ -> t) module type ResultSet = sig @@ -510,36 +460,21 @@ type 'a t = { module Run (RS : ResultSet) = struct + + let fmt = Format.err_formatter let pr x = Format.fprintf fmt x - module Formlist = - struct - type t = formlist - let nil : t = Nil - let cons q f i m l = Cons(q,f,i,m,l) - let hash = function Nil -> 0 | Cons(_,_,i,_,_) -> max_int land i - let pr fmt l = - let rec loop = function - | Nil -> () - | Cons(q,f,_,m,l) -> - Format.fprintf fmt "%i %s" q (if m then "=>" else "->"); - pr_frm fmt f; - Format.fprintf fmt "\n%!"; - loop l - in - loop l - end - type ptset_list = Nil | Cons of Ptset.t*int*ptset_list + type ptset_list = Nil | Cons of Ptset.Int.t*int*ptset_list let hpl l = match l with | Nil -> 0 | Cons (_,i,_) -> i - let cons s l = Cons (s,(Ptset.hash s) + 65599 * (hpl l), l) + let cons s l = Cons (s,(Ptset.Int.hash s) + 65599 * (hpl l), l) let rec empty_size n = if n == 0 then Nil - else cons Ptset.empty (empty_size (n-1)) + else cons Ptset.Int.empty (empty_size (n-1)) let fold_pl f l acc = let rec loop l acc = match l with @@ -573,66 +508,61 @@ type 'a t = { in loop Nil l - let td_trans = Hashtbl.create 4096 + module IntSet = Set.Make(struct type t = int let compare = (-) end) + + +IFDEF DEBUG +THEN +INCLUDE "html_trace.ml" + +END + + let td_trans = Hashtbl.create 4096 + let mk_fun f s = D_IGNORE_(register_funname f s,f) + let mk_app_fun f arg s = let g = f arg in + D_IGNORE_(register_funname g ((get_funname f) ^ " " ^ s), g) + let string_of_ts tags = (Ptset.Int.fold (fun t a -> a ^ " " ^ (Tag.to_string t) ) tags "{")^ " }" let choose_jump tagset qtags1 qtagsn a f_nil f_text f_t1 f_s1 f_tn f_sn f_notext = let tags1,hastext1,fin1 = inter_text tagset (tags a qtags1) in let tagsn,hastextn,finn = inter_text tagset (tags a qtagsn) in -(* Format.fprintf Format.err_formatter "Tags below states "; - pr_st Format.err_formatter (Ptset.elements qtags1); - Format.fprintf Format.err_formatter " are { "; - Ptset.iter (fun t -> Format.fprintf Format.err_formatter "%s " (Tag.to_string t)) tags1; - Format.fprintf Format.err_formatter "}, %b,%b\n%!" hastext1 fin1; - - Format.fprintf Format.err_formatter "Tags below states "; - pr_st Format.err_formatter (Ptset.elements qtagsn); - Format.fprintf Format.err_formatter " are { "; - Ptset.iter (fun t -> Format.fprintf Format.err_formatter "%s " (Tag.to_string t)) tagsn; - Format.fprintf Format.err_formatter "}, %b,%b\n%!" hastextn finn; -*) if (hastext1||hastextn) then f_text (* jumping to text nodes doesn't work really well *) - else if (Ptset.is_empty tags1) && (Ptset.is_empty tagsn) then f_nil - else if (Ptset.is_empty tagsn) then - if (Ptset.is_singleton tags1) then f_t1 (Ptset.choose tags1) (* TaggedChild/Sibling *) - else f_s1 tags1 (* SelectChild/Sibling *) - else if (Ptset.is_empty tags1) then - if (Ptset.is_singleton tagsn) then f_tn (Ptset.choose tagsn) (* TaggedDesc/Following *) - else f_sn tagsn (* SelectDesc/Following *) + else if (Ptset.Int.is_empty tags1) && (Ptset.Int.is_empty tagsn) then f_nil + else if (Ptset.Int.is_empty tagsn) then + if (Ptset.Int.is_singleton tags1) + then (* TaggedChild/Sibling *) + let tag = (Ptset.Int.choose tags1) in mk_app_fun f_t1 tag (Tag.to_string tag) + else (* SelectChild/Sibling *) + mk_app_fun f_s1 tags1 (string_of_ts tags1) + else if (Ptset.Int.is_empty tags1) then + if (Ptset.Int.is_singleton tagsn) + then (* TaggedDesc/Following *) + let tag = (Ptset.Int.choose tagsn) in mk_app_fun f_tn tag (Tag.to_string tag) + else (* SelectDesc/Following *) + mk_app_fun f_sn tagsn (string_of_ts tagsn) else f_notext let choose_jump_down a b c d = choose_jump a b c d - (Tree.mk_nil) - (Tree.text_below) - (*fun x -> let i,j = Tree.doc_ids x in - let res = Tree.text_below x in - Printf.printf "Calling text_below %s (tag=%s), docids= (%i,%i), res=%s\n" - (Tree.dump_node x) (Tag.to_string (Tree.tag x)) i j (Tree.dump_node res); - res*) - (fun _ -> Tree.node_child ) (* !! no tagged_child in Tree.ml *) - (fun _ -> Tree.node_child ) (* !! no select_child in Tree.ml *) - (Tree.tagged_desc) - (fun _ -> Tree.node_child ) (* !! no select_desc *) - (Tree.node_child) + (mk_fun (Tree.mk_nil) "Tree.mk_nil") + (mk_fun (Tree.text_below) "Tree.text_below") + (mk_fun (fun _ -> Tree.node_child) "[TaggedChild]Tree.node_child") (* !! no tagged_child in Tree.ml *) + (mk_fun (fun _ -> Tree.node_child) "[SelectChild]Tree.node_child") (* !! no select_child in Tree.ml *) + (mk_fun (Tree.tagged_desc) "Tree.tagged_desc") + (mk_fun (fun _ -> Tree.node_child ) "[SelectDesc]Tree.node_child") (* !! no select_desc *) + (mk_fun (Tree.node_child) "Tree.node_child") let choose_jump_next a b c d = choose_jump a b c d - (fun t _ -> Tree.mk_nil t) - (Tree.text_next) - (*fun x y -> let i,j = Tree.doc_ids x in - let res = Tree.text_next x y in - Printf.printf "Calling text_next %s (tag=%s) ctx=%s, docids= (%i,%i), res=%s\n" - (Tree.dump_node x) (Tag.to_string (Tree.tag x)) (Tree.dump_node y) i j (Tree.dump_node res); - res*) - - (fun _ -> Tree.node_sibling_ctx) (* !! no tagged_sibling in Tree.ml *) - (fun _ -> Tree.node_sibling_ctx) (* !! no select_child in Tree.ml *) - (Tree.tagged_foll_below) - (fun _ -> Tree.node_sibling_ctx) (* !! no select_foll *) - (Tree.node_sibling_ctx) - - + (mk_fun (fun t _ -> Tree.mk_nil t) "Tree.mk_nil2") + (mk_fun (Tree.text_next) "Tree.text_next") + (mk_fun (fun _ -> Tree.node_sibling_ctx) "[TaggedSibling]Tree.node_sibling_ctx")(* !! no tagged_sibling in Tree.ml *) + (mk_fun (fun _ -> Tree.node_sibling_ctx) "[SelectSibling]Tree.node_sibling_ctx")(* !! no select_sibling in Tree.ml *) + (mk_fun (Tree.tagged_foll_ctx) "Tree.tagged_foll_ctx") + (mk_fun (fun _ -> Tree.node_sibling_ctx) "[SelectFoll]Tree.node_sibling_ctx")(* !! no select_foll *) + (mk_fun (Tree.node_sibling_ctx) "Tree.node_sibling_ctx") + let get_trans slist tag a t = try Hashtbl.find td_trans (tag,hpl slist) @@ -640,36 +570,34 @@ type 'a t = { | Not_found -> let fl_list,llist,rlist,ca,da,sa,fa = fold_pl - (fun set _ (fll_acc,lllacc,rllacc,ca,da,sa,fa) -> (* For each set *) + (fun set _ (fll_acc,lllacc,rllacc,ca,da,sa,fa) -> (* For each set *) let fl,ll,rr,ca,da,sa,fa = - Ptset.fold - (fun q acc -> - fst ( - List.fold_left - (fun (((fl_acc,ll_acc,rl_acc,c_acc,d_acc,s_acc,f_acc),h_acc) as acc) - (ts,(m,f,_)) -> - if (TagSet.mem tag ts) - then - let (child,desc,below),(sibl,foll,after) = f.st in - let h_acc = HASHINT3(h_acc,f.fid,HASHINT2(q,vb m)) in - ((Formlist.cons q f h_acc m fl_acc, - Ptset.union ll_acc below, - Ptset.union rl_acc after, - Ptset.union child c_acc, - Ptset.union desc d_acc, - Ptset.union sibl s_acc, - Ptset.union foll f_acc), - h_acc) - else acc ) (acc,0) ( - try Hashtbl.find a.phi q - with - Not_found -> Printf.eprintf "Looking for state %i, doesn't exist!!!\n%!" - q;[] - )) + StateSet.fold + (fun q acc -> + List.fold_left + (fun ((fl_acc,ll_acc,rl_acc,c_acc,d_acc,s_acc,f_acc) as acc) + (ts,t) -> + if (TagSet.mem tag ts) + then + let _,_,f,_ = Transition.node t in + let (child,desc,below),(sibl,foll,after) = Formula.st f in + (Formlist.add t fl_acc, + StateSet.union ll_acc below, + StateSet.union rl_acc after, + StateSet.union child c_acc, + StateSet.union desc d_acc, + StateSet.union sibl s_acc, + StateSet.union foll f_acc) + else acc ) acc ( + try Hashtbl.find a.trans q + with + Not_found -> Printf.eprintf "Looking for state %i, doesn't exist!!!\n%!" + q;[] + ) - ) set (Formlist.nil,Ptset.empty,Ptset.empty,ca,da,sa,fa) + ) set (Formlist.empty,StateSet.empty,StateSet.empty,ca,da,sa,fa) in fl::fll_acc, cons ll lllacc, cons rr rllacc,ca,da,sa,fa) - slist ([],Nil,Nil,Ptset.empty,Ptset.empty,Ptset.empty,Ptset.empty) + slist ([],Nil,Nil,StateSet.empty,StateSet.empty,StateSet.empty,StateSet.empty) in (* Logic to chose the first and next function *) let tags_below,tags_after = Tree.tags t tag in @@ -687,7 +615,7 @@ type 'a t = { if mark then RS.cons t (RS.concat res1 res2) else RS.concat res1 res2 else RS.empty - + let top_down ?(noright=false) a t slist ctx slot_size = let pempty = empty_size slot_size in let eval_fold2_slist fll sl1 sl2 res1 res2 t = @@ -695,14 +623,7 @@ type 'a t = { let rec fold l1 l2 fll i aq = match l1,l2,fll with | Cons(s1,_,ll1), Cons(s2, _ ,ll2),fl::fll -> let r',rb,rb1,rb2,mark = eval_formlist s1 s2 fl in -(* let _ = pr "Evaluation context : "; pr_st fmt (Ptset.elements s1); - pr_st fmt (Ptset.elements s2); - pr "Formlist (%i) : " (Formlist.hash fl); - Formlist.pr fmt fl; - pr "Results : "; pr_st fmt (Ptset.elements r'); - pr ", %b %b %b %b\n%!" rb rb1 rb2 mark - in *) - let _ = res.(i) <- merge rb rb1 rb2 mark t res1.(i) res2.(i) + let _ = res.(i) <- merge rb rb1 rb2 mark t res1.(i) res2.(i) in fold ll1 ll2 fll (i+1) (cons r' aq) | Nil, Nil,[] -> aq,res @@ -712,25 +633,17 @@ type 'a t = { in let null_result() = (pempty,Array.make slot_size RS.empty) in let rec loop t slist ctx = - let (a,b) = if Tree.is_nil t then null_result() else - let tag = Tree.tag t in + let tag = Tree.tag t in let fl_list,llist,rlist,first,next = get_trans slist tag a t in -(* let _ = pr "For tag %s,node %s, returning formulae list: \n%!" - (Tag.to_string tag) (Tree.dump_node t); - List.iter (fun f -> Formlist.pr fmt f;pr "\n%!") fl_list - in*) let sl1,res1 = loop (first t) llist t in let sl2,res2 = loop (next t ctx) rlist ctx in - eval_fold2_slist fl_list sl1 sl2 res1 res2 t - in -(* let _ = pr "Inside topdown call: tree was %s, tag = %s" (Tree.dump_node t) (if Tree.is_nil t then "###" - else Tag.to_string (Tree.tag t)); - iter_pl (fun s -> (pr_st fmt (Ptset.elements s))) a; - Array.iter (fun i -> pr "%i" (RS.length i)) b; - pr "\n%!"; in*) (a,b) - + let res = eval_fold2_slist fl_list sl1 sl2 res1 res2 t + in + D_IGNORE_( + register_trace t (slist,(fst res),sl1,sl2,fl_list,first,next,ctx), + res) in let loop_no_right t slist ctx = if Tree.is_nil t then null_result() @@ -739,20 +652,29 @@ type 'a t = { let fl_list,llist,rlist,first,next = get_trans slist tag a t in let sl1,res1 = loop (first t) llist t in let sl2,res2 = null_result() in - eval_fold2_slist fl_list sl1 sl2 res1 res2 t + let res = eval_fold2_slist fl_list sl1 sl2 res1 res2 t + in + D_IGNORE_( + register_trace t (slist,(fst res),sl1,sl2,fl_list,first,next,ctx), + res) in (if noright then loop_no_right else loop) t slist ctx + let run_top_down a t = let init = cons a.init Nil in let _,res = top_down a t init t 1 - in res.(0) + in + D_IGNORE_( + output_trace a t "trace.html" + (RS.fold (fun t a -> IntSet.add (Tree.id t) a) res.(0) IntSet.empty), + res.(0)) ;; module Configuration = struct - module Ptss = Set.Make(Ptset) - module IMap = Map.Make(Ptset) + module Ptss = Set.Make(StateSet) + module IMap = Map.Make(StateSet) type t = { hash : int; sets : Ptss.t; results : RS.t IMap.t } @@ -765,17 +687,17 @@ type 'a t = { if Ptss.mem s c.sets then { c with results = IMap.add s (RS.concat r (IMap.find s c.results)) c.results} else - { hash = HASHINT2(c.hash,Ptset.hash s); + { hash = HASHINT2(c.hash,Ptset.Int.hash s); sets = Ptss.add s c.sets; results = IMap.add s r c.results } let pr fmt c = Format.fprintf fmt "{"; - Ptss.iter (fun s -> pr_st fmt (Ptset.elements s); + Ptss.iter (fun s -> StateSet.print fmt s; Format.fprintf fmt " ") c.sets; Format.fprintf fmt "}\n%!"; IMap.iter (fun k d -> - pr_st fmt (Ptset.elements k); + StateSet.print fmt k; Format.fprintf fmt "-> %i\n" (RS.length d)) c.results; Format.fprintf fmt "\n%!" @@ -797,7 +719,7 @@ type 'a t = { in let h,s = Ptss.fold - (fun s (ah,ass) -> (HASHINT2(ah,Ptset.hash s), + (fun s (ah,ass) -> (HASHINT2(ah,Ptset.Int.hash s), Ptss.add s ass)) (Ptss.union c1.sets c2.sets) (0,Ptss.empty) in @@ -819,19 +741,19 @@ type 'a t = { Hashtbl.find h_fold (hs,Formlist.hash formlist,dir) with Not_found -> let res = - if dir then eval_formlist ~memo:false s Ptset.empty formlist - else eval_formlist ~memo:false Ptset.empty s formlist + if dir then eval_formlist ~memo:false s Ptset.Int.empty formlist + else eval_formlist ~memo:false Ptset.Int.empty s formlist in (Hashtbl.add h_fold (hs,Formlist.hash formlist,dir) res;res) in(* let _ = pr "Evaluating on set (%s) with tree %s=%s" (if dir then "left" else "right") (Tag.to_string (Tree.tag t)) (Tree.dump_node t) ; - pr_st fmt (Ptset.elements s); + StateSet.print fmt (Ptset.Int.elements s); pr ", formualae (with hash %i): \n" (Formlist.hash formlist); Formlist.pr fmt formlist; pr "result is "; - pr_st fmt (Ptset.elements r'); + StateSet.print fmt (Ptset.Int.elements r'); pr " %b %b %b %b \n%!" rb rb1 rb2 mark ; in *) if rb && ((dir&&rb1)|| ((not dir) && rb2)) @@ -857,22 +779,19 @@ type 'a t = { Hashtbl.find h_trans key with | Not_found -> - let f_list,_ = - Hashtbl.fold (fun q l acc -> - List.fold_left (fun (fl_acc,h_acc) (ts,(m,f,_)) -> - if TagSet.mem ptag ts - then - let h_acc = HASHINT3(h_acc,f.fid,HASHINT2(q,vb m)) in - (Formlist.cons q f h_acc m fl_acc, - h_acc) - else (fl_acc,h_acc)) - acc l) - a.phi (Formlist.nil,0) - in - let res = fold_pl (fun _ _ acc -> f_list::acc) slist [] - in - (Hashtbl.add h_trans key res;res) - + let f_list = + Hashtbl.fold (fun q l acc -> + List.fold_left (fun fl_acc (ts,t) -> + if TagSet.mem ptag ts then Formlist.add t fl_acc + else fl_acc) + + acc l) + a.trans Formlist.empty + in + let res = fold_pl (fun _ _ acc -> f_list::acc) slist [] + in + (Hashtbl.add h_trans key res;res) + let h_tdconf = Hashtbl.create 511 let rec bottom_up a tree conf next jump_fun root dotd init accu = @@ -933,7 +852,7 @@ type 'a t = { pr "accu is %i\n" (RS.length accu); in *) let accu,newconf = Configuration.IMap.fold (fun s res (ar,nc) -> - if Ptset.intersect s init then + if Ptset.Int.intersect s init then ( RS.concat res ar ,nc) else (ar,Configuration.add nc s res)) (newconf.Configuration.results) (accu,Configuration.empty) @@ -955,12 +874,12 @@ type 'a t = { | Not_found -> let res = Hashtbl.fold (fun q l acc -> if List.exists (fun (ts,_) -> TagSet.mem tag ts) l - then Ptset.add q acc - else acc) a.phi Ptset.empty + then Ptset.Int.add q acc + else acc) a.trans Ptset.Int.empty in Hashtbl.add h_tdconf tag res;res in (* let _ = pr ", among "; - pr_st fmt (Ptset.elements r); + StateSet.print fmt (Ptset.Int.elements r); pr "\n%!"; in *) let r = cons r Nil in @@ -970,25 +889,27 @@ type 'a t = { | _ -> assert false in (* pr "Result of topdown run is %!"; - pr_st fmt (Ptset.elements set); + StateSet.print fmt (Ptset.Int.elements set); pr ", number is %i\n%!" (RS.length res.(0)); *) Configuration.add Configuration.empty set res.(0) let run_bottom_up a t k = - let trlist = Hashtbl.find a.phi (Ptset.choose a.init) + let trlist = Hashtbl.find a.trans (Ptset.Int.choose a.init) in let init = List.fold_left - (fun acc (_,(_,f,_)) -> - Ptset.union acc (let (_,_,l) = fst (f.st) in l)) - Ptset.empty trlist + (fun acc (_,t) -> + let _,_,f,_ = Transition.node t in + let _,_,l = fst ( Formula.st f ) in + Ptset.Int.union acc l) + Ptset.Int.empty trlist in let tree1,jump_fun = match k with | `TAG (tag) -> (*Tree.tagged_lowest t tag, fun tree -> Tree.tagged_next tree tag*) - (Tree.tagged_desc tag t, fun tree -> Tree.tagged_foll_below tag tree t) + (Tree.tagged_desc tag t, fun tree -> Tree.tagged_foll_ctx tag tree t) | `CONTAINS(_) -> (Tree.text_below t,fun tree -> Tree.text_next tree t) | _ -> assert false in @@ -1003,7 +924,7 @@ type 'a t = { Configuration.pr fmt conf in *) let acc = Configuration.IMap.fold - ( fun s res acc -> if Ptset.intersect init s + ( fun s res acc -> if Ptset.Int.intersect init s then RS.concat res acc else acc) conf.Configuration.results acc in if Tree.is_nil next_of_next (*|| Tree.equal next next_of_next *)then