X-Git-Url: http://git.nguyen.vg/gitweb/?a=blobdiff_plain;f=ptset.ml;h=befb42e1df4a6420f3fe06918ab33dc6e9c32620;hb=df5fdb22632be887ecd9f5c46a014e7e970148a2;hp=10c311c23ec85d41f0c6ac044f00babe1babade9;hpb=09870a49122b3d7048422818dbb0a038513b4d14;p=SXSI%2Fxpathcomp.git diff --git a/ptset.ml b/ptset.ml index 10c311c..befb42e 100644 --- a/ptset.ml +++ b/ptset.ml @@ -8,44 +8,433 @@ INCLUDE "utils.ml" module type S = sig - include Set.S + type elt + + type 'a node + module rec Node : sig + include Hcons.S with type data = Data.t + end + and Data : sig + include + Hashtbl.HashedType with type t = Node.t node + end + type data = Data.t + type t = Node.t + + + val empty : t + val is_empty : t -> bool + val mem : elt -> t -> bool + val add : elt -> t -> t + val singleton : elt -> t + val remove : elt -> t -> t + val union : t -> t -> t + val inter : t -> t -> t + val diff : t -> t -> t + val compare : t -> t -> int + val equal : t -> t -> bool + val subset : t -> t -> bool + val iter : (elt -> unit) -> t -> unit + val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a + val for_all : (elt -> bool) -> t -> bool + val exists : (elt -> bool) -> t -> bool + val filter : (elt -> bool) -> t -> t + val partition : (elt -> bool) -> t -> t * t + val cardinal : t -> int + val elements : t -> elt list + val min_elt : t -> elt + val max_elt : t -> elt + val choose : t -> elt + val split : elt -> t -> t * bool * t + val intersect : t -> t -> bool val is_singleton : t -> bool val mem_union : t -> t -> t val hash : t -> int - val uid : t -> int + val uid : t -> Uid.t val uncons : t -> elt*t val from_list : elt list -> t + val make : data -> t + val node : t -> data + + val with_id : Uid.t -> t end -module Int : S with type elt = int = +module Make ( H : Hcons.SA ) : S with type elt = H.t = struct - type elt = int - external hash_elt : elt -> int = "%identity" - external uid_elt : elt -> int = "%identity" - let equal_elt : elt -> elt -> bool = (==);; + type elt = H.t + type 'a node = + | Empty + | Leaf of elt + | Branch of int * int * 'a * 'a + + module rec Node : Hcons.S with type data = Data.t = Hcons.Make (Data) + and Data : Hashtbl.HashedType with type t = Node.t node = + struct + type t = Node.t node + let equal x y = + match x,y with + | Empty,Empty -> true + | Leaf k1, Leaf k2 -> k1 == k2 + | Branch(b1,i1,l1,r1),Branch(b2,i2,l2,r2) -> + b1 == b2 && i1 == i2 && + (Node.equal l1 l2) && + (Node.equal r1 r2) + | _ -> false + let hash = function + | Empty -> 0 + | Leaf i -> HASHINT2(HALF_MAX_INT,Uid.to_int (H.uid i)) + | Branch (b,i,l,r) -> HASHINT4(b,i,Uid.to_int l.Node.id, Uid.to_int r.Node.id) + end + + type data = Data.t + type t = Node.t + + let hash = Node.hash + let uid = Node.uid + let make = Node.make + let node _ = failwith "node" + let empty = Node.make Empty -DEFINE USE_PTSET_INCLUDE -INCLUDE "ptset_include.ml" + let is_empty s = (Node.node s) == Empty + + let branch p m l r = Node.make (Branch(p,m,l,r)) -end -module Make ( H : Hcons.S ) : S with type elt = H.t = -struct - type elt = H.t - let hash_elt = H.hash - let uid_elt = H.uid - let equal_elt = H.equal -INCLUDE "ptset_include.ml" + let leaf k = Node.make (Leaf k) + + (* To enforce the invariant that a branch contains two non empty sub-trees *) + let branch_ne p m t0 t1 = + if (is_empty t0) then t1 + else if is_empty t1 then t0 else branch p m t0 t1 + + (********** from here on, only use the smart constructors *************) + + let zero_bit k m = (k land m) == 0 + + let singleton k = leaf k + + let is_singleton n = + match Node.node n with Leaf _ -> true + | _ -> false + + let mem (k:elt) n = + let kid = Uid.to_int (H.uid k) in + let rec loop n = match Node.node n with + | Empty -> false + | Leaf j -> k == j + | Branch (p, _, l, r) -> if kid <= p then loop l else loop r + in loop n + + let rec min_elt n = match Node.node n with + | Empty -> raise Not_found + | Leaf k -> k + | Branch (_,_,s,_) -> min_elt s + + let rec max_elt n = match Node.node n with + | Empty -> raise Not_found + | Leaf k -> k + | Branch (_,_,_,t) -> max_elt t + + let elements s = + let rec elements_aux acc n = match Node.node n with + | Empty -> acc + | Leaf k -> k :: acc + | Branch (_,_,l,r) -> elements_aux (elements_aux acc r) l + in + elements_aux [] s + + let mask k m = (k lor (m-1)) land (lnot m) + + let naive_highest_bit x = + assert (x < 256); + let rec loop i = + if i = 0 then 1 else if x lsr i = 1 then 1 lsl i else loop (i-1) + in + loop 7 + + let hbit = Array.init 256 naive_highest_bit + + + let highest_bit x = let n = (x) lsr 24 in + if n != 0 then Array.unsafe_get hbit n lsl 24 + else let n = (x) lsr 16 in if n != 0 then Array.unsafe_get hbit n lsl 16 + else let n = (x) lsr 8 in if n != 0 then Array.unsafe_get hbit n lsl 8 + else Array.unsafe_get hbit (x) + +IFDEF WORDIZE64 +THEN + let highest_bit64 x = + let n = x lsr 32 in if n != 0 then highest_bit n lsl 32 + else highest_bit x +END + + + let branching_bit p0 p1 = highest_bit (p0 lxor p1) + + let join p0 t0 p1 t1 = + let m = branching_bit p0 p1 in + if zero_bit p0 m then + branch (mask p0 m) m t0 t1 + else + branch (mask p0 m) m t1 t0 + + let match_prefix k p m = (mask k m) == p + + let add k t = + let kid = Uid.to_int (H.uid k) in + let rec ins n = match Node.node n with + | Empty -> leaf k + | Leaf j -> if j == k then n else join kid (leaf k) (Uid.to_int (H.uid j)) n + | Branch (p,m,t0,t1) -> + if match_prefix kid p m then + if zero_bit kid m then + branch p m (ins t0) t1 + else + branch p m t0 (ins t1) + else + join kid (leaf k) p n + in + ins t + + let remove k t = + let kid = Uid.to_int(H.uid k) in + let rec rmv n = match Node.node n with + | Empty -> empty + | Leaf j -> if k == j then empty else n + | Branch (p,m,t0,t1) -> + if match_prefix kid p m then + if zero_bit kid m then + branch_ne p m (rmv t0) t1 + else + branch_ne p m t0 (rmv t1) + else + n + in + rmv t + + (* should run in O(1) thanks to Hash consing *) + + let equal a b = Node.equal a b + + let compare a b = (Uid.to_int (Node.uid a)) - (Uid.to_int (Node.uid b)) + + let rec merge s t = + if (equal s t) (* This is cheap thanks to hash-consing *) + then s + else + match Node.node s, Node.node t with + | Empty, _ -> t + | _, Empty -> s + | Leaf k, _ -> add k t + | _, Leaf k -> add k s + | Branch (p,m,s0,s1), Branch (q,n,t0,t1) -> + if m == n && match_prefix q p m then + branch p m (merge s0 t0) (merge s1 t1) + else if m > n && match_prefix q p m then + if zero_bit q m then + branch p m (merge s0 t) s1 + else + branch p m s0 (merge s1 t) + else if m < n && match_prefix p q n then + if zero_bit p n then + branch q n (merge s t0) t1 + else + branch q n t0 (merge s t1) + else + (* The prefixes disagree. *) + join p s q t + + + + + let rec subset s1 s2 = (equal s1 s2) || + match (Node.node s1,Node.node s2) with + | Empty, _ -> true + | _, Empty -> false + | Leaf k1, _ -> mem k1 s2 + | Branch _, Leaf _ -> false + | Branch (p1,m1,l1,r1), Branch (p2,m2,l2,r2) -> + if m1 == m2 && p1 == p2 then + subset l1 l2 && subset r1 r2 + else if m1 < m2 && match_prefix p1 p2 m2 then + if zero_bit p1 m2 then + subset l1 l2 && subset r1 l2 + else + subset l1 r2 && subset r1 r2 + else + false + + + let union s1 s2 = merge s1 s2 + (* Todo replace with e Memo Module *) + module MemUnion = Hashtbl.Make( + struct + type set = t + type t = set*set + let equal (x,y) (z,t) = (equal x z)&&(equal y t) + let equal a b = equal a b || equal b a + let hash (x,y) = (* commutative hash *) + let x = Node.hash x + and y = Node.hash y + in + if x < y then HASHINT2(x,y) else HASHINT2(y,x) + end) + let h_mem = MemUnion.create MED_H_SIZE + + let mem_union s1 s2 = + try MemUnion.find h_mem (s1,s2) + with Not_found -> + let r = merge s1 s2 in MemUnion.add h_mem (s1,s2) r;r + + + let rec inter s1 s2 = + if equal s1 s2 + then s1 + else + match (Node.node s1,Node.node s2) with + | Empty, _ -> empty + | _, Empty -> empty + | Leaf k1, _ -> if mem k1 s2 then s1 else empty + | _, Leaf k2 -> if mem k2 s1 then s2 else empty + | Branch (p1,m1,l1,r1), Branch (p2,m2,l2,r2) -> + if m1 == m2 && p1 == p2 then + merge (inter l1 l2) (inter r1 r2) + else if m1 > m2 && match_prefix p2 p1 m1 then + inter (if zero_bit p2 m1 then l1 else r1) s2 + else if m1 < m2 && match_prefix p1 p2 m2 then + inter s1 (if zero_bit p1 m2 then l2 else r2) + else + empty + + let rec diff s1 s2 = + if equal s1 s2 + then empty + else + match (Node.node s1,Node.node s2) with + | Empty, _ -> empty + | _, Empty -> s1 + | Leaf k1, _ -> if mem k1 s2 then empty else s1 + | _, Leaf k2 -> remove k2 s1 + | Branch (p1,m1,l1,r1), Branch (p2,m2,l2,r2) -> + if m1 == m2 && p1 == p2 then + merge (diff l1 l2) (diff r1 r2) + else if m1 > m2 && match_prefix p2 p1 m1 then + if zero_bit p2 m1 then + merge (diff l1 s2) r1 + else + merge l1 (diff r1 s2) + else if m1 < m2 && match_prefix p1 p2 m2 then + if zero_bit p1 m2 then diff s1 l2 else diff s1 r2 + else + s1 + + +(*s All the following operations ([cardinal], [iter], [fold], [for_all], + [exists], [filter], [partition], [choose], [elements]) are + implemented as for any other kind of binary trees. *) + +let rec cardinal n = match Node.node n with + | Empty -> 0 + | Leaf _ -> 1 + | Branch (_,_,t0,t1) -> cardinal t0 + cardinal t1 + +let rec iter f n = match Node.node n with + | Empty -> () + | Leaf k -> f k + | Branch (_,_,t0,t1) -> iter f t0; iter f t1 + +let rec fold f s accu = match Node.node s with + | Empty -> accu + | Leaf k -> f k accu + | Branch (_,_,t0,t1) -> fold f t0 (fold f t1 accu) + + +let rec for_all p n = match Node.node n with + | Empty -> true + | Leaf k -> p k + | Branch (_,_,t0,t1) -> for_all p t0 && for_all p t1 + +let rec exists p n = match Node.node n with + | Empty -> false + | Leaf k -> p k + | Branch (_,_,t0,t1) -> exists p t0 || exists p t1 + +let rec filter pr n = match Node.node n with + | Empty -> empty + | Leaf k -> if pr k then n else empty + | Branch (p,m,t0,t1) -> branch_ne p m (filter pr t0) (filter pr t1) + +let partition p s = + let rec part (t,f as acc) n = match Node.node n with + | Empty -> acc + | Leaf k -> if p k then (add k t, f) else (t, add k f) + | Branch (_,_,t0,t1) -> part (part acc t0) t1 + in + part (empty, empty) s + +let rec choose n = match Node.node n with + | Empty -> raise Not_found + | Leaf k -> k + | Branch (_, _,t0,_) -> choose t0 (* we know that [t0] is non-empty *) + + +let split x s = + let coll k (l, b, r) = + if k < x then add k l, b, r + else if k > x then l, b, add k r + else l, true, r + in + fold coll s (empty, false, empty) + +(*s Additional functions w.r.t to [Set.S]. *) + +let rec intersect s1 s2 = (equal s1 s2) || + match (Node.node s1,Node.node s2) with + | Empty, _ -> false + | _, Empty -> false + | Leaf k1, _ -> mem k1 s2 + | _, Leaf k2 -> mem k2 s1 + | Branch (p1,m1,l1,r1), Branch (p2,m2,l2,r2) -> + if m1 == m2 && p1 == p2 then + intersect l1 l2 || intersect r1 r2 + else if m1 < m2 && match_prefix p2 p1 m1 then + intersect (if zero_bit p2 m1 then l1 else r1) s2 + else if m1 > m2 && match_prefix p1 p2 m2 then + intersect s1 (if zero_bit p1 m2 then l2 else r2) + else + false + + + +let rec uncons n = match Node.node n with + | Empty -> raise Not_found + | Leaf k -> (k,empty) + | Branch (p,m,s,t) -> let h,ns = uncons s in h,branch_ne p m ns t + +let from_list l = List.fold_left (fun acc e -> add e acc) empty l + +let with_id = Node.with_id end -(* Have to benchmark wheter this whole include stuff is worth it *) -module I : S with type elt = int = Make ( struct type t = int - type data = t - external hash : t -> int = "%identity" - external uid : t -> int = "%identity" - let equal : t -> t -> bool = (==) - external make : t -> int = "%identity" - external node : t -> int = "%identity" - - end - ) +module Int : sig + include S with type elt = int + val print : Format.formatter -> t -> unit +end + = +struct + include Make ( struct type t = int + type data = t + external hash : t -> int = "%identity" + external uid : t -> Uid.t = "%identity" + external equal : t -> t -> bool = "%eq" + external make : t -> int = "%identity" + external node : t -> int = "%identity" + external with_id : Uid.t -> t = "%identity" + end + ) + let print ppf s = + Format.pp_print_string ppf "{ "; + iter (fun i -> Format.fprintf ppf "%i " i) s; + Format.pp_print_string ppf "}"; + Format.pp_print_flush ppf () + end