X-Git-Url: http://git.nguyen.vg/gitweb/?a=blobdiff_plain;f=ptset.ml;h=ea84ddf845e19416da121aa08176703d2a37e11c;hb=25dd7fcc77c2188732d96d5ff98d759bb81737cb;hp=673523c6db0d39898df0c69437560f05fb1a86b0;hpb=83aa6cf8a120ea6681402ce42ae56631fca1ddf4;p=SXSI%2Fxpathcomp.git diff --git a/ptset.ml b/ptset.ml index 673523c..ea84ddf 100644 --- a/ptset.ml +++ b/ptset.ml @@ -5,170 +5,165 @@ (* checking *) (* *) (***************************************************************************) - - -type elt = int - -type t = { id : int; - key : int; (* hash *) - node : node } -and node = - | Empty - | Leaf of int - | Branch of int * int * t * t - -module Node = - struct - type _t = t - type t = _t - let hash x = x.key - let hash_node = function - | Empty -> 0 - | Leaf i -> i+1 - (* power of 2 +/- 1 are fast ! *) - | Branch (b,i,l,r) -> - (b lsl 1)+ b + i+(i lsl 4) + (l.key lsl 5)-l.key - + (r.key lsl 7) - r.key - let hash_node x = (hash_node x) land max_int - let equal x y = match (x.node,y.node) with - | Empty,Empty -> true - | Leaf k1, Leaf k2 when k1 == k2 -> true - | Branch(p1,m1,l1,r1), Branch(p2,m2,l2,r2) when m1==m2 && p1==p2 && - (l1.id == l2.id) && (r1.id == r2.id) -> true - | _ -> false - end - -module WH =Weak.Make(Node) -(* struct - include Hashtbl.Make(Node) - let merge h v = - if mem h v then v - else (add h v v;v) +INCLUDE "utils.ml" +module type S = +sig + include Set.S + val intersect : t -> t -> bool + val is_singleton : t -> bool + val mem_union : t -> t -> t + val hash : t -> int + val uid : t -> int + val uncons : t -> elt*t + val from_list : elt list -> t end -*) -let pool = WH.create 4093 - -(* Neat trick thanks to Alain Frisch ! *) - -let gen_uid () = Oo.id (object end) -let empty = { id = gen_uid (); - key = 0; - node = Empty } - -let _ = WH.add pool empty - -let is_empty s = s.id==0 +module Make ( H : Hcons.S ) : S with type elt = H.t = +struct + type elt = H.t + + type 'a node = + | Empty + | Leaf of elt + | Branch of int * int * 'a * 'a + + module rec HNode : Hcons.S with type data = Node.t = Hcons.Make (Node) + and Node : Hashtbl.HashedType with type t = HNode.t node = + struct + type t = HNode.t node + let equal x y = + match x,y with + | Empty,Empty -> true + | Leaf k1, Leaf k2 -> H.equal k1 k2 + | Branch(b1,i1,l1,r1),Branch(b2,i2,l2,r2) -> + b1 == b2 && i1 == i2 && + (HNode.equal l1 l2) && + (HNode.equal r1 r2) + | _ -> false + let hash = function + | Empty -> 0 + | Leaf i -> HASHINT2(HALF_MAX_INT,H.hash i) + | Branch (b,i,l,r) -> HASHINT4(b,i,HNode.hash l, HNode.hash r) + end + ;; + + type t = HNode.t + let hash = HNode.hash + let uid = HNode.uid -let rec norm n = - let v = { id = gen_uid (); - key = Node.hash_node n; - node = n } - in - WH.merge pool v - -(* WH.merge pool *) - -let branch p m l r = norm (Branch(p,m,l,r)) -let leaf k = norm (Leaf k) - -(* To enforce the invariant that a branch contains two non empty sub-trees *) -let branch_ne = function - | (_,_,e,t) when is_empty e -> t - | (_,_,t,e) when is_empty e -> t - | (p,m,t0,t1) -> branch p m t0 t1 - -(********** from here on, only use the smart constructors *************) - -let zero_bit k m = (k land m) == 0 + let empty = HNode.make Empty + + let is_empty s = (HNode.node s) == Empty + + let branch p m l r = HNode.make (Branch(p,m,l,r)) -let singleton k = if k < 0 then failwith "singleton" else leaf k + let leaf k = HNode.make (Leaf k) -let rec mem k n = match n.node with - | Empty -> false - | Leaf j -> k == j - | Branch (p, _, l, r) -> if k <= p then mem k l else mem k r - -let rec min_elt n = match n.node with - | Empty -> raise Not_found - | Leaf k -> k - | Branch (_,_,s,_) -> min_elt s + (* To enforce the invariant that a branch contains two non empty sub-trees *) + let branch_ne p m t0 t1 = + if (is_empty t0) then t1 + else if is_empty t1 then t0 else branch p m t0 t1 - let rec max_elt n = match n.node with + (********** from here on, only use the smart constructors *************) + + let zero_bit k m = (k land m) == 0 + + let singleton k = leaf k + + let is_singleton n = + match HNode.node n with Leaf _ -> true + | _ -> false + + let mem (k:elt) n = + let kid = H.uid k in + let rec loop n = match HNode.node n with + | Empty -> false + | Leaf j -> H.equal k j + | Branch (p, _, l, r) -> if kid <= p then loop l else loop r + in loop n + + let rec min_elt n = match HNode.node n with + | Empty -> raise Not_found + | Leaf k -> k + | Branch (_,_,s,_) -> min_elt s + + let rec max_elt n = match HNode.node n with | Empty -> raise Not_found | Leaf k -> k | Branch (_,_,_,t) -> max_elt t - + let elements s = - let rec elements_aux acc n = match n.node with + let rec elements_aux acc n = match HNode.node n with | Empty -> acc | Leaf k -> k :: acc | Branch (_,_,l,r) -> elements_aux (elements_aux acc r) l in - elements_aux [] s - + elements_aux [] s + let mask k m = (k lor (m-1)) land (lnot m) - + let naive_highest_bit x = assert (x < 256); let rec loop i = if i = 0 then 1 else if x lsr i = 1 then 1 lsl i else loop (i-1) in - loop 7 - + loop 7 + let hbit = Array.init 256 naive_highest_bit - - let highest_bit_32 x = - let n = x lsr 24 in if n != 0 then Array.unsafe_get hbit n lsl 24 - else let n = x lsr 16 in if n != 0 then Array.unsafe_get hbit n lsl 16 - else let n = x lsr 8 in if n != 0 then Array.unsafe_get hbit n lsl 8 - else Array.unsafe_get hbit x - - let highest_bit_64 x = - let n = x lsr 32 in if n != 0 then (highest_bit_32 n) lsl 32 - else highest_bit_32 x - - let highest_bit = match Sys.word_size with - | 32 -> highest_bit_32 - | 64 -> highest_bit_64 - | _ -> assert false - let branching_bit p0 p1 = highest_bit (p0 lxor p1) + let highest_bit x = let n = (x) lsr 24 in + if n != 0 then Array.unsafe_get hbit n lsl 24 + else let n = (x) lsr 16 in if n != 0 then Array.unsafe_get hbit n lsl 16 + else let n = (x) lsr 8 in if n != 0 then Array.unsafe_get hbit n lsl 8 + else Array.unsafe_get hbit (x) + +IFDEF WORDIZE64 +THEN + let highest_bit64 x = + let n = x lsr 32 in if n != 0 then highest_bit n lsl 32 + else highest_bit x +END + + + let branching_bit p0 p1 = highest_bit (p0 lxor p1) + let join p0 t0 p1 t1 = let m = branching_bit p0 p1 in - if zero_bit p0 m then - branch (mask p0 m) m t0 t1 - else - branch (mask p0 m) m t1 t0 - + if zero_bit p0 m then + branch (mask p0 m) m t0 t1 + else + branch (mask p0 m) m t1 t0 + let match_prefix k p m = (mask k m) == p - + let add k t = - let rec ins n = match n.node with + let kid = H.uid k in + let rec ins n = match HNode.node n with | Empty -> leaf k - | Leaf j -> if j == k then n else join k (leaf k) j n + | Leaf j -> if H.equal j k then n else join kid (leaf k) (H.uid j) n | Branch (p,m,t0,t1) -> - if match_prefix k p m then - if zero_bit k m then + if match_prefix kid p m then + if zero_bit kid m then branch p m (ins t0) t1 else branch p m t0 (ins t1) else - join k (leaf k) p n + join kid (leaf k) p n in ins t let remove k t = - let rec rmv n = match n.node with + let kid = H.uid k in + let rec rmv n = match HNode.node n with | Empty -> empty - | Leaf j -> if k == j then empty else n + | Leaf j -> if H.equal k j then empty else n | Branch (p,m,t0,t1) -> - if match_prefix k p m then - if zero_bit k m then - branch_ne (p, m, rmv t0, t1) + if match_prefix kid p m then + if zero_bit kid m then + branch_ne p m (rmv t0) t1 else - branch_ne (p, m, t0, rmv t1) + branch_ne p m t0 (rmv t1) else n in @@ -176,41 +171,41 @@ let rec min_elt n = match n.node with (* should run in O(1) thanks to Hash consing *) - let equal a b = a==b || a.id == b.id - - let compare a b = if a == b then 0 else a.id - b.id + let equal a b = HNode.equal a b + let compare a b = (HNode.uid a) - (HNode.uid b) let rec merge s t = if (equal s t) (* This is cheap thanks to hash-consing *) then s else - match s.node,t.node with - | Empty, _ -> t - | _, Empty -> s - | Leaf k, _ -> add k t - | _, Leaf k -> add k s - | Branch (p,m,s0,s1), Branch (q,n,t0,t1) -> - if m == n && match_prefix q p m then - branch p m (merge s0 t0) (merge s1 t1) - else if m > n && match_prefix q p m then - if zero_bit q m then - branch p m (merge s0 t) s1 - else - branch p m s0 (merge s1 t) - else if m < n && match_prefix p q n then - if zero_bit p n then - branch q n (merge s t0) t1 - else - branch q n t0 (merge s t1) + match HNode.node s, HNode.node t with + | Empty, _ -> t + | _, Empty -> s + | Leaf k, _ -> add k t + | _, Leaf k -> add k s + | Branch (p,m,s0,s1), Branch (q,n,t0,t1) -> + if m == n && match_prefix q p m then + branch p m (merge s0 t0) (merge s1 t1) + else if m > n && match_prefix q p m then + if zero_bit q m then + branch p m (merge s0 t) s1 + else + branch p m s0 (merge s1 t) + else if m < n && match_prefix p q n then + if zero_bit p n then + branch q n (merge s t0) t1 else - (* The prefixes disagree. *) - join p s q t - - - + branch q n t0 (merge s t1) + else + (* The prefixes disagree. *) + join p s q t + + + + let rec subset s1 s2 = (equal s1 s2) || - match (s1.node,s2.node) with + match (HNode.node s1,HNode.node s2) with | Empty, _ -> true | _, Empty -> false | Leaf k1, _ -> mem k1 s2 @@ -226,14 +221,34 @@ let rec min_elt n = match n.node with else false - let union s t = - merge s t + let union s1 s2 = merge s1 s2 + (* Todo replace with e Memo Module *) + module MemUnion = Hashtbl.Make( + struct + type set = t + type t = set*set + let equal (x,y) (z,t) = (equal x z)&&(equal y t) + let equal a b = equal a b || equal b a + let hash (x,y) = (* commutative hash *) + let x = HNode.hash x + and y = HNode.hash y + in + if x < y then HASHINT2(x,y) else HASHINT2(y,x) + end) + let h_mem = MemUnion.create MED_H_SIZE + + let mem_union s1 s2 = + try MemUnion.find h_mem (s1,s2) + with Not_found -> + let r = merge s1 s2 in MemUnion.add h_mem (s1,s2) r;r + + let rec inter s1 s2 = if equal s1 s2 then s1 else - match (s1.node,s2.node) with + match (HNode.node s1,HNode.node s2) with | Empty, _ -> empty | _, Empty -> empty | Leaf k1, _ -> if mem k1 s2 then s1 else empty @@ -252,7 +267,7 @@ let rec min_elt n = match n.node with if equal s1 s2 then empty else - match (s1.node,s2.node) with + match (HNode.node s1,HNode.node s2) with | Empty, _ -> empty | _, Empty -> s1 | Leaf k1, _ -> if mem k1 s2 then empty else s1 @@ -269,53 +284,52 @@ let rec min_elt n = match n.node with if zero_bit p1 m2 then diff s1 l2 else diff s1 r2 else s1 - - - + (*s All the following operations ([cardinal], [iter], [fold], [for_all], [exists], [filter], [partition], [choose], [elements]) are implemented as for any other kind of binary trees. *) -let rec cardinal n = match n.node with +let rec cardinal n = match HNode.node n with | Empty -> 0 | Leaf _ -> 1 | Branch (_,_,t0,t1) -> cardinal t0 + cardinal t1 -let rec iter f n = match n.node with +let rec iter f n = match HNode.node n with | Empty -> () | Leaf k -> f k | Branch (_,_,t0,t1) -> iter f t0; iter f t1 -let rec fold f s accu = match s.node with +let rec fold f s accu = match HNode.node s with | Empty -> accu | Leaf k -> f k accu | Branch (_,_,t0,t1) -> fold f t0 (fold f t1 accu) -let rec for_all p n = match n.node with + +let rec for_all p n = match HNode.node n with | Empty -> true | Leaf k -> p k | Branch (_,_,t0,t1) -> for_all p t0 && for_all p t1 -let rec exists p n = match n.node with +let rec exists p n = match HNode.node n with | Empty -> false | Leaf k -> p k | Branch (_,_,t0,t1) -> exists p t0 || exists p t1 -let rec filter pr n = match n.node with +let rec filter pr n = match HNode.node n with | Empty -> empty | Leaf k -> if pr k then n else empty - | Branch (p,m,t0,t1) -> branch_ne (p, m, filter pr t0, filter pr t1) + | Branch (p,m,t0,t1) -> branch_ne p m (filter pr t0) (filter pr t1) let partition p s = - let rec part (t,f as acc) n = match n.node with + let rec part (t,f as acc) n = match HNode.node n with | Empty -> acc | Leaf k -> if p k then (add k t, f) else (t, add k f) | Branch (_,_,t0,t1) -> part (part acc t0) t1 in part (empty, empty) s -let rec choose n = match n.node with +let rec choose n = match HNode.node n with | Empty -> raise Not_found | Leaf k -> k | Branch (_, _,t0,_) -> choose t0 (* we know that [t0] is non-empty *) @@ -330,26 +344,13 @@ let split x s = fold coll s (empty, false, empty) - -let rec dump n = - Printf.eprintf "{ id = %i; key = %i ; node=" n.id n.key; - match n.node with - | Empty -> Printf.eprintf "Empty; }\n" - | Leaf k -> Printf.eprintf "Leaf %i; }\n" k - | Branch (p,m,l,r) -> - Printf.eprintf "Branch(%i,%i,id=%i,id=%i); }\n" - p m l.id r.id; - dump l; - dump r - -(*i*) let make l = List.fold_left (fun acc e -> add e acc ) empty l (*i*) (*s Additional functions w.r.t to [Set.S]. *) let rec intersect s1 s2 = (equal s1 s2) || - match (s1.node,s2.node) with + match (HNode.node s1,HNode.node s2) with | Empty, _ -> false | _, Empty -> false | Leaf k1, _ -> mem k1 s2 @@ -365,6 +366,25 @@ let rec intersect s1 s2 = (equal s1 s2) || false -let hash s = s.key -let from_list l = List.fold_left (fun acc i -> add i acc) empty l +let rec uncons n = match HNode.node n with + | Empty -> raise Not_found + | Leaf k -> (k,empty) + | Branch (p,m,s,t) -> let h,ns = uncons s in h,branch_ne p m ns t + +let from_list l = List.fold_left (fun acc e -> add e acc) empty l + + +end + +(* Have to benchmark wheter this whole include stuff is worth it *) +module Int : S with type elt = int = Make ( struct type t = int + type data = t + external hash : t -> int = "%identity" + external uid : t -> int = "%identity" + let equal : t -> t -> bool = (==) + external make : t -> int = "%identity" + external node : t -> int = "%identity" + + end + )