X-Git-Url: http://git.nguyen.vg/gitweb/?a=blobdiff_plain;f=src%2Frun.ml;h=537769029fc37fd9dc73cb8bdb88857087086fb0;hb=be78f22d7e28eafc4cd575e134550a863ac06db1;hp=1824aebec8d311591cc88fe8a6c15f6908dfe900;hpb=f9b9f1ce524acda75c7f3583cd3751901ecd17a5;p=tatoo.git diff --git a/src/run.ml b/src/run.ml index 1824aeb..5377690 100644 --- a/src/run.ml +++ b/src/run.ml @@ -16,347 +16,266 @@ INCLUDE "utils.ml" INCLUDE "debug.ml" -open Format -open Misc - -type stats = { run : int; - tree_size : int; - fetch_trans_cache_access : int; - fetch_trans_cache_hit : int; - eval_trans_cache_access : int; - eval_trans_cache_hit : int; - } - -let fetch_trans_cache_hit = ref 0 -let fetch_trans_cache_access = ref 0 -let eval_trans_cache_hit = ref 0 -let eval_trans_cache_access = ref 0 -let reset_stat_counters () = - fetch_trans_cache_hit := 0; - fetch_trans_cache_access := 0; - eval_trans_cache_hit := 0; - eval_trans_cache_access := 0 - module Make (T : Tree.S) = - struct - - module NodeSummary = - struct - (* Pack into an integer the result of the is_* and has_ predicates - for a given node *) - type t = int - let dummy = -1 - (* - ...44443210 - ...4444 -> kind - 3 -> has_right - 2 -> has_left - 1 -> is_right - 0 -> is_left - *) - let is_left (s : t) : bool = - s land 1 != 0 - - let is_right (s : t) : bool = - s land 0b10 != 0 - - let has_left (s : t) : bool = - s land 0b100 != 0 - - let has_right (s : t) : bool = - s land 0b1000 != 0 - - let kind (s : t) : Tree.NodeKind.t = - Obj.magic (s lsr 4) - - let make is_left is_right has_left has_right kind = - (int_of_bool is_left) lor - ((int_of_bool is_right) lsl 1) lor - ((int_of_bool has_left) lsl 2) lor - ((int_of_bool has_right) lsl 3) lor - ((Obj.magic kind) lsl 4) - end - - let dummy_set = StateSet.singleton State.dummy - open Bigarray - type run = { - tree : T.t ; - (* The argument of the run *) - auto : Ata.t; - (* The automaton to be run *) - sat: StateSet.t array; - (* A mapping from node preorders to states satisfied at that node *) - mutable pass : int; - (* Number of run we have performed *) - mutable fetch_trans_cache : Ata.Formula.t Cache.N2.t; - (* A cache from states * label to list of transitions *) - mutable td_cache : StateSet.t Cache.N6.t; - mutable bu_cache : StateSet.t Cache.N6.t; - (* Two 6-way caches used during the top-down and bottom-up phase - label * self-set * fc-set * ns-set * parent-set * node-shape -> self-set - *) - node_summaries: (int, int16_unsigned_elt, c_layout) Array1.t; - } - - - let dummy_form = Ata.Formula.stay State.dummy - - let make auto tree = - let len = T.size tree in - { - tree = tree; - auto = auto; - sat = Array.create len StateSet.empty; - pass = 0; - fetch_trans_cache = Cache.N2.create dummy_form; - td_cache = Cache.N6.create dummy_set; - bu_cache = Cache.N6.create dummy_set; - node_summaries = let ba = Array1.create int16_unsigned c_layout len in - Array1.fill ba 0; ba - } - - let get_form fetch_trans_cache auto tag q = - let phi = - incr fetch_trans_cache_access; - Cache.N2.find fetch_trans_cache (tag.QName.id :> int) (q :> int) - in - if phi == dummy_form then - let phi = Ata.get_form auto tag q in - let () = - Cache.N2.add - fetch_trans_cache - (tag.QName.id :> int) - (q :> int) phi - in phi - else begin - incr fetch_trans_cache_hit; - phi - end - - - let eval_form phi fcs nss ps ss summary = - let open Ata in - let rec loop phi = - begin match Formula.expr phi with - | Boolean.False -> false - | Boolean.True -> true - | Boolean.Atom (a, b) -> - begin - let open NodeSummary in - match a.Atom.node with - | Move (m, q) -> - b && StateSet.mem q ( - match m with - `First_child -> fcs - | `Next_sibling -> nss - | `Parent | `Previous_sibling -> ps - | `Stay -> ss - ) - | Is_first_child -> b == is_left summary - | Is_next_sibling -> b == is_right summary - | Is k -> b == (k == kind summary) - | Has_first_child -> b == has_left summary - | Has_next_sibling -> b == has_right summary - end - | Boolean.And(phi1, phi2) -> loop phi1 && loop phi2 - | Boolean.Or (phi1, phi2) -> loop phi1 || loop phi2 - end - in - loop phi - - - let eval_trans_aux auto fetch_trans_cache tag fcs nss ps sat todo summary = - StateSet.fold (fun q (a_sat) -> - let phi = - get_form fetch_trans_cache auto tag q - in - if eval_form phi fcs nss ps a_sat summary then - StateSet.add q a_sat - else a_sat - ) todo sat - - - let rec eval_trans_fix auto fetch_trans_cache tag fcs nss ps sat todo summary = - let new_sat = - eval_trans_aux auto fetch_trans_cache tag fcs nss ps sat todo summary - in - if new_sat == sat then sat else - eval_trans_fix auto fetch_trans_cache tag fcs nss ps new_sat todo summary - - - let eval_trans auto fetch_trans_cache eval_cache tag fcs nss ps ss todo summary = - let fcsid = (fcs.StateSet.id :> int) in - let nssid = (nss.StateSet.id :> int) in - let psid = (ps.StateSet.id :> int) in - let ssid = (ss.StateSet.id :> int) in - let tagid = (tag.QName.id :> int) in - let res = Cache.N6.find eval_cache tagid summary ssid fcsid nssid psid in - incr eval_trans_cache_access; - if res != dummy_set then begin incr eval_trans_cache_hit; res end - else let new_sat = - eval_trans_fix auto fetch_trans_cache tag fcs nss ps ss todo summary +struct + + let int (x : bool) : int = Obj.magic x + let kint (x : Tree.NodeKind.t) : int = Obj.magic x + let summary tree node is_first is_next fc ns = + (int (ns != T.nil)) lor + ((int (fc != T.nil)) lsl 1) lor + ((int is_next) lsl 2) lor + ((int is_first) lsl 3) lor + ((kint (T.kind tree node)) lsl 4) + + let has_next_sibling summary : bool = Obj.magic (summary land 1) + let has_first_child summary : bool = Obj.magic ((summary lsr 1) land 1) + let is_next_sibling summary : bool = Obj.magic ((summary lsr 2) land 1) + let is_first_child summary : bool = Obj.magic ((summary lsr 3) land 1) + let kind summary : Tree.NodeKind.t = Obj.magic (summary lsr 4) + + let dummy_set = StateSet.singleton State.dummy + let dummy_trans_list = + Ata.(TransList.cons + (Transition.make (State.dummy, QNameSet.empty, Formula.false_)) + TransList.nil) + + module Run = + struct + open Bigarray + type t = { + mutable pass : int; + auto : Ata.t; + trans_cache : Ata.TransList.t Cache.N2.t; + td_cache : StateSet.t Cache.N6.t; + bu_cache : StateSet.t Cache.N6.t; + mark_cache : (StateSet.t*StateSet.t*StateSet.t) Cache.N4.t; + } + + let create a = + { + pass = 0; + auto = a; + trans_cache = Cache.N2.create dummy_trans_list; + td_cache = Cache.N6.create dummy_set; + bu_cache = Cache.N6.create dummy_set; + mark_cache = Cache.N4.create (dummy_set,dummy_set,dummy_set); + } + end + + + let eval_form phi node_summary f_set n_set p_set s_set = + let rec loop phi = + let open Boolean in + match Ata.Formula.expr phi with + False -> false + | True -> true + | Or (phi1, phi2) -> loop phi1 || loop phi2 + | And (phi1, phi2) -> loop phi1 && loop phi2 + | Atom (a, b) -> b == Ata.( + match Atom.node a with + Is_first_child -> is_first_child node_summary + | Is_next_sibling -> is_next_sibling node_summary + | Is k -> k == kind node_summary + | Has_first_child -> has_first_child node_summary + | Has_next_sibling -> has_next_sibling node_summary + | Move (m, q) -> + let set = + match m with + `First_child -> f_set + | `Next_sibling -> n_set + | `Parent + | `Previous_sibling -> p_set + | `Stay -> s_set in - Cache.N6.add eval_cache tagid summary ssid fcsid nssid psid new_sat; - new_sat - + StateSet.mem q set + ) + in + loop phi - let unsafe_get a i = if i < 0 then StateSet.empty else Array.unsafe_get a i - let top_down run = - let i = run.pass in - let tree = run.tree in - let auto = run.auto in - let states_by_rank = Ata.get_states_by_rank auto in - let td_todo = states_by_rank.(i) in - let bu_todo = if i + 1 = Array.length states_by_rank then StateSet.empty + let eval_trans_aux trans_list node_summary f_set n_set p_set s_set = + let open Ata in + TransList.fold (fun trs acc -> + let q, _ , phi = Transition.node trs in + if eval_form phi node_summary f_set n_set p_set s_set then + StateSet.add q acc else - states_by_rank.(i+1) + acc) trans_list s_set + + let eval_trans trans_list node_summary f_set n_set p_set s_set = + let rec loop old_s = + + let new_s = + eval_trans_aux trans_list node_summary f_set n_set p_set old_s + in + if new_s == old_s then old_s else loop new_s + in + loop s_set + + let get_trans run tag set = + let i = (tag.QName.id :> int) in + let j = (set.StateSet.id :> int) in + let res = Cache.N2.find run.Run.trans_cache i j in + if res == dummy_trans_list then begin + let res = Ata.get_trans run.Run.auto tag set in + Cache.N2.add run.Run.trans_cache i j res; + res + end + else + res + + let eval_trans run cache set tag node_summary f_set n_set p_set s_set = + let i = node_summary in + let j = (tag.QName.id :> int) in + let k = (f_set.StateSet.id :> int) in + let l = (n_set.StateSet.id :> int) in + let m = (p_set.StateSet.id :> int) in + let n = (s_set.StateSet.id :> int) in + let res = Cache.N6.find cache i j k l m n in + if res == dummy_set then begin + let trans_list = get_trans run tag set in + let res = eval_trans trans_list node_summary f_set n_set p_set s_set in + Cache.N6.add cache i j k l m n res; + res + end + else res + + let auto_run run tree prev_nodes td_states bu_states exit_states _i = + let exit_id = (exit_states.StateSet.id :> int) in + let empty_sets = StateSet.(empty,empty,empty) in + + let mark_node front res node set f_set n_set = + let i = (set.StateSet.id :> int) in + let j = (f_set.StateSet.id :> int) in + let k = (n_set.StateSet.id :> int) in + let (mstates, _, _) as block = + Cache.N4.find run.Run.mark_cache exit_id i j k + in + + let mstates, ll, rr = + if mstates == dummy_set then begin + let r1 = StateSet.inter set exit_states in + let r2 = StateSet.inter f_set exit_states in + let r3 = StateSet.inter n_set exit_states in + let r = r1,r2,r3 in + Cache.N4.add run.Run.mark_cache exit_id i j k r; + r + end + else block + in + if mstates != StateSet.empty then + let block = mstates, ll, rr, node in + if front then Sequence.push_front block res + else Sequence.push_back block res in - let rec loop_td_and_bu node parent parent_sat = + let rec loop res node is_first is_next parent_set = if node == T.nil then StateSet.empty else begin - let node_id = T.preorder tree node in - let fc = T.first_child tree node in - let ns = T.next_sibling tree node in + let set,lset,rset = + if Sequence.is_empty prev_nodes then + empty_sets + else + let set,lset,rset, node' = Sequence.peek prev_nodes in + if node == node' then begin + ignore (Sequence.pop prev_nodes); + set,lset,rset + end + else + empty_sets + in let tag = T.tag tree node in - (* We enter the node from its parent *) - let summary = - let s = Array1.unsafe_get run.node_summaries node_id in - if s != 0 then s else - let s = - NodeSummary.make - (node == T.first_child tree parent) (*is_left *) - (node == T.next_sibling tree parent)(*is_right *) - (fc != T.nil) (* has_left *) - (ns != T.nil) (* has_right *) - (T.kind tree node) (* kind *) - in - run.node_summaries.{node_id} <- s; s + let first_child = T.first_child tree node in + let next_sibling = T.next_sibling tree node in + let node_summary = + summary tree node is_first is_next first_child next_sibling in - let status0 = unsafe_get run.sat node_id in - (* get the node_statuses for the first child, next sibling and parent *) - let fcs = unsafe_get run.sat (T.preorder tree fc) in - let nss = unsafe_get run.sat (T.preorder tree ns) in - (* evaluate the transitions with all this statuses *) let status1 = - eval_trans auto run.fetch_trans_cache run.td_cache tag fcs nss - parent_sat - status0 td_todo summary + eval_trans run run.Run.td_cache td_states tag node_summary lset rset parent_set set in - (* update the cache if the status of the node changed *) - if status1 != status0 then run.sat.(node_id) <- status1; - let fcs1 = loop_td_and_bu fc node status1 in - if bu_todo == StateSet.empty then - loop_td_and_bu ns node status1 (* tail call *) - else - let nss1 = loop_td_and_bu ns node status1 in + let fcs = loop res first_child true false status1 in + let rres = Sequence.create () in + let nss = loop rres next_sibling false true status1 in + if bu_states == StateSet.empty then (* tail call *) begin + mark_node true res node status1 fcs StateSet.empty; + Sequence.append res rres; + status1 + end else begin + let status2 = - eval_trans auto run.fetch_trans_cache run.bu_cache tag fcs1 nss1 - parent_sat - status1 bu_todo summary + eval_trans run run.Run.bu_cache bu_states tag node_summary fcs nss parent_set status1 in - if status2 != status1 then run.sat.(node_id) <- status2; + if status2 != StateSet.empty then + mark_node true res node status2 fcs nss; + Sequence.append res rres; status2 + end; end in - let _ = loop_td_and_bu (T.root tree) T.nil StateSet.empty in - run.pass <- run.pass + 2 - - - let get_results run = - let cache = run.sat in - let auto = run.auto in - let tree = run.tree in - let sel_states = Ata.get_selecting_states auto in - let rec loop node acc = - if node == T.nil then acc - else - let acc0 = loop (T.next_sibling tree node) acc in - let acc1 = loop (T.first_child tree node) acc0 in - - if StateSet.intersect - cache.(T.preorder tree node)(* NodeStatus.node.sat *) - sel_states then node::acc1 - else acc1 - in - loop (T.root tree) [] - - - let get_full_results run = - let cache = run.sat(*tatus*) in - let auto = run.auto in - let tree = run.tree in - let res_mapper = Hashtbl.create MED_H_SIZE in - let () = - StateSet.iter - (fun q -> Hashtbl.add res_mapper q []) - (Ata.get_selecting_states auto) - in - let dummy = [ T.nil ] in - let res_mapper = Cache.N1.create dummy in - let () = - StateSet.iter - (fun q -> Cache.N1.add res_mapper (q :> int) []) - (Ata.get_selecting_states auto) - in - let rec loop node = - if node != T.nil then - let () = loop (T.next_sibling tree node) in - let () = loop (T.first_child tree node) in - StateSet.iter - (fun q -> - let res = Cache.N1.find res_mapper (q :> int) in - if res != dummy then - Cache.N1.add res_mapper (q :> int) (node::res) - ) - cache.(T.preorder tree node)(* NodeStatus.node.sat *) - in - loop (T.root tree); - (StateSet.fold_right - (fun q acc -> (q, Cache.N1.find res_mapper (q :> int))::acc) - (Ata.get_selecting_states auto) []) - - - let prepare_run run list = - let tree = run.tree in - let auto = run.auto in - let sat0 = Ata.get_starting_states auto in - List.iter (fun node -> - let node_id = T.preorder tree node in - run.sat.(node_id) <- sat0) list - - let tree_size = ref 0 - let pass = ref 0 - let compute_run auto tree nodes = - pass := 0; - tree_size := T.size tree; - let run = make auto tree in - prepare_run run nodes; - let rank = Ata.get_max_rank auto in - while run.pass <= rank do - top_down run; - run.td_cache <- Cache.N6.create dummy_set; - run.bu_cache <- Cache.N6.create dummy_set; + let res = Sequence.create () in + ignore (loop res (T.root tree) false false StateSet.empty); + res + + + + let prepare_run auto l = + let res = Sequence.create () in + let start = Ata.get_starting_states auto in + Sequence.iter (fun n -> Sequence.push_back (start, StateSet.empty, StateSet.empty, n) res) l; + res + +let time f arg msg = + let t1 = Unix.gettimeofday () in + let r = f arg in + let t2 = Unix.gettimeofday () in + let time = (t2 -. t1) *. 1000. in + Logger.msg `STATS "%s: %fms" msg time; + r + + + let main_eval auto tree nodes = + let s_nodes = prepare_run auto nodes in + let ranked_states = Ata.get_states_by_rank auto in + let acc = ref s_nodes in + let max_rank = Ata.get_max_rank auto in + let run = Run.create auto in + for i = 0 to max_rank do + let open Ata in + let { td; bu; exit } = ranked_states.(i) in + run.Run.pass <- i; + acc := auto_run run tree !acc td bu exit i; done; - pass := Ata.get_max_rank auto + 1; + !acc - run - - let full_eval auto tree nodes = - let r = compute_run auto tree nodes in - get_full_results r let eval auto tree nodes = - let r = compute_run auto tree nodes in - get_results r + let res = main_eval auto tree nodes in + let r = Sequence.create () in + Sequence.iter (fun (_,_,_, n) -> Sequence.push_back n r) res; + r + - let stats () = { - tree_size = !tree_size; - run = !pass; - fetch_trans_cache_access = !fetch_trans_cache_access; - fetch_trans_cache_hit = !fetch_trans_cache_hit; - eval_trans_cache_access = !eval_trans_cache_access; - eval_trans_cache_hit = !eval_trans_cache_hit; - } + let full_eval auto tree nodes = + let res = main_eval auto tree nodes in + let dummy = Sequence.create () in + let cache = Cache.N1.create dummy in + Sequence.iter (fun (set, _, _, n) -> + StateSet.iter (fun q -> + let qres = Cache.N1.find cache q in + let qres = + if qres == dummy then begin + let s = Sequence.create () in + Cache.N1.add cache q s; + s + end + else qres + in + Sequence.push_back n qres) set ) + res; + let l = StateSet.fold (fun q acc -> + let res = Cache.N1.find cache q in + (q, res) :: acc) (Ata.get_selecting_states auto) [] + in + List.rev l end