INCLUDE "debug.ml" INCLUDE "utils.ml" INCLUDE "log.ml" open Format type instr = | SELF of unit | LEFT of State.t | RIGHT of State.t type opcode = | OP_NOP of unit | OP_LEFT1 of State.t | OP_LEFT2 of State.t * State.t | OP_RIGHT1 of State.t | OP_RIGHT2 of State.t * State.t | OP_LEFT1_RIGHT1 of State.t * State.t | OP_LEFT2_RIGHT1 of State.t * State.t * State.t | OP_LEFT1_RIGHT2 of State.t * State.t * State.t | OP_LEFT2_RIGHT2 of State.t * State.t * State.t * State.t | OP_SELF of unit | OP_SELF_LEFT1 of State.t | OP_SELF_LEFT2 of State.t * State.t | OP_SELF_RIGHT1 of State.t | OP_SELF_RIGHT2 of State.t * State.t | OP_SELF_LEFT1_RIGHT1 of State.t * State.t | OP_SELF_LEFT2_RIGHT1 of State.t * State.t * State.t | OP_SELF_LEFT1_RIGHT2 of State.t * State.t * State.t | OP_SELF_LEFT2_RIGHT2 of State.t * State.t * State.t * State.t | OP_OTHER of instr array type code = Nil | Cons of State.t * opcode * code let rec length l = match l with Nil -> 0 | Cons(_, _, t) -> 1 + length t let debug fmt l = fprintf fmt "length of code is %i\n%!" (length l) let print_instr fmt i = match i with | SELF _ -> fprintf fmt "SELF" | LEFT q -> fprintf fmt "LEFT{%a}" State.print q | RIGHT q -> fprintf fmt "RIGHT{%a}" State.print q let print_opcode fmt code = match code with | OP_NOP _ -> fprintf fmt "OP_NOP" | OP_LEFT1 src -> fprintf fmt "OP_LEFT1{%a}" State.print src | OP_LEFT2 (src1, src2) -> fprintf fmt "OP_LEFT2{%a, %a}" State.print src1 State.print src2 | OP_RIGHT1 src -> fprintf fmt "OP_RIGHT1{%a}" State.print src | OP_RIGHT2 (src1, src2) -> fprintf fmt "OP_RIGHT2{%a, %a}" State.print src1 State.print src2 | OP_LEFT1_RIGHT1 (src1, src2) -> fprintf fmt "OP_LEFT1_RIGHT1{%a}{%a}" State.print src1 State.print src2 | OP_LEFT2_RIGHT1 (src1, src2, src3) -> fprintf fmt "OP_LEFT2_RIGHT1{%a, %a}{%a}" State.print src1 State.print src2 State.print src3 | OP_LEFT1_RIGHT2 (src1, src2, src3) -> fprintf fmt "OP_LEFT1_RIGHT2{%a}{%a, %a}" State.print src1 State.print src2 State.print src3 | OP_LEFT2_RIGHT2 (src1, src2, src3, src4) -> fprintf fmt "OP_LEFT2_RIGHT2{%a, %a}{%a, %a}" State.print src1 State.print src2 State.print src3 State.print src4 | OP_SELF _ -> fprintf fmt "OP_SELF" | OP_SELF_LEFT1 src -> fprintf fmt "OP_SELF_LEFT1{%a}" State.print src | OP_SELF_LEFT2 (src1, src2) -> fprintf fmt "OP_SELF_LEFT2{%a, %a}" State.print src1 State.print src2 | OP_SELF_RIGHT1 src -> fprintf fmt "OP_SELF_RIGHT1{%a}" State.print src | OP_SELF_RIGHT2 (src1, src2) -> fprintf fmt "OP_SELF_RIGHT2{%a, %a}" State.print src1 State.print src2 | OP_SELF_LEFT1_RIGHT1 (src1, src2) -> fprintf fmt "OP_SELF_LEFT1_RIGHT1{%a}{%a}" State.print src1 State.print src2 | OP_SELF_LEFT2_RIGHT1 (src1, src2, src3) -> fprintf fmt "OP_SELF_LEFT2_RIGHT1{%a, %a}{%a}" State.print src1 State.print src2 State.print src3 | OP_SELF_LEFT1_RIGHT2 (src1, src2, src3) -> fprintf fmt "OP_SELF_LEFT1_RIGHT2{%a}{%a, %a}" State.print src1 State.print src2 State.print src3 | OP_SELF_LEFT2_RIGHT2 (src1, src2, src3, src4) -> fprintf fmt "OP_SELF_LEFT2_RIGHT2{%a, %a}{%a, %a}" State.print src1 State.print src2 State.print src3 State.print src4 | OP_OTHER line -> fprintf fmt "OP_OTHER: "; Array.iter (fun i -> print_instr fmt i; fprintf fmt " ") line let merge_rev equal choose l = match l with | [] -> l | x :: ll -> List.fold_left (fun acc i -> let j = List.hd acc in if equal i j then (choose i j)::(List.tl acc) else i::acc) [x] ll let compile_instr_list l = let linstr = merge_rev (=) (fun i _ -> i) (List.sort (fun x y -> compare y x) l) in match linstr with [] -> OP_NOP() | [ LEFT q ] -> OP_LEFT1 q | [ LEFT q1; LEFT q2 ] -> OP_LEFT2(q2, q1) | [ RIGHT q ] -> OP_RIGHT1 q | [ RIGHT q1; RIGHT q2 ] -> OP_RIGHT2(q2, q1) | [ LEFT q1; RIGHT q2 ] -> OP_LEFT1_RIGHT1(q1, q2) | [ LEFT q1; LEFT q2; RIGHT q3 ] -> OP_LEFT2_RIGHT1 (q2, q1, q3) | [ LEFT q1; RIGHT q2; RIGHT q3 ] -> OP_LEFT1_RIGHT2 (q1, q3, q2) | [ LEFT q1; LEFT q2; RIGHT q3; RIGHT q4 ] -> OP_LEFT2_RIGHT2 (q2, q1, q4, q3) | [ SELF () ] -> OP_SELF() | [ SELF _; LEFT q ] -> OP_SELF_LEFT1 q | [ SELF _; LEFT q1; LEFT q2 ] -> OP_SELF_LEFT2(q2, q1) | [ SELF _; RIGHT q ] -> OP_SELF_RIGHT1 q | [ SELF _; RIGHT q1; RIGHT q2 ] -> OP_SELF_RIGHT2(q2, q1) | [ SELF _; LEFT q1; RIGHT q2 ] -> OP_SELF_LEFT1_RIGHT1(q1, q2) | [ SELF _; LEFT q1; LEFT q2; RIGHT q3 ] -> OP_SELF_LEFT2_RIGHT1 (q2, q1, q3) | [ SELF _; LEFT q1; RIGHT q2; RIGHT q3 ] -> OP_SELF_LEFT1_RIGHT2 (q1, q3, q2) | [ SELF _; LEFT q1; LEFT q2; RIGHT q3; RIGHT q4 ] -> OP_SELF_LEFT2_RIGHT2 (q2, q1, q4, q3) | i -> OP_OTHER (Array.of_list i) let to_list l = let rec loop l acc = match l with [] -> acc | (a, b)::ll -> loop ll (Cons(a,b, acc)) in loop l Nil let rec filter_uniq statel stater l = match l with [] -> [] | (s, il)::ll -> let nil, nsl, nsr = List.fold_left (fun ((a_il, al, ar)as acc) i -> match i with | LEFT q -> if List.mem q al then acc else (i :: a_il, q::al, ar) | RIGHT q -> if List.mem q ar then acc else (i :: a_il, al, q :: ar) | _ -> (i :: a_il, al, ar)) ([], statel, stater) il in (s, nil) :: (filter_uniq nsl nsr ll) let compile l = let l = List.sort (fun (s1, _) (s2, _) -> compare s1 s2) l in let l = filter_uniq [] [] l in let l = merge_rev (fun (s1, _) (s2, _) -> s1 = s2) (fun (s1, i1) (_, i2) -> (s1, i1@i2)) l in let marking = List.exists (fun (_, l) -> List.exists (function SELF _ -> true | _ -> false) l) l in let l = List.map (fun (s, il) -> (s, compile_instr_list il)) l in let l = List.filter (fun (_, instr) -> instr <> OP_NOP ()) l in to_list l, not marking (* let _total = ref 0 let _empty = ref 0 let () = at_exit (fun () -> Printf.eprintf "Dummy affectations %i/%i\n%!" !_empty !_total) ;; *) DEFINE SET(a, b) = (a) <- (b) DEFINE PRINT_TEMPLATE(ns) = let pr fmt (state, count) = fprintf fmt "%a: %i" State.print state (ns.length count) in Pretty.print_array ~sep:", " pr fmt (Array.mapi (fun x y -> (x,y)) s) DEFINE EXEC_INSTR_TEMPLATE(ns) = fun slot1 slot2 t inst acc -> match inst with | SELF _ -> ns.snoc acc t | LEFT src -> ns.concat acc slot1.(src) | RIGHT src -> ns.concat acc slot2.(src) DEFINE EXEC_CODE_TEMPLATE(ns) = fun slot slot1 slot2 t dst code -> match code with | OP_NOP _ -> () | OP_LEFT1 src -> SET(slot.(dst), slot1.(src)) | OP_LEFT2 (src1, src2) -> SET(slot.(dst) , ns.concat slot1.(src1) slot1.(src2)) | OP_RIGHT1 src -> SET(slot.(dst) , slot2.(src)) | OP_RIGHT2 (src1, src2) -> SET (slot.(dst) , ns.concat slot2.(src1) slot2.(src2) ) | OP_LEFT1_RIGHT1 (src1, src2) -> SET (slot.(dst) , ns.concat slot1.(src1) slot2.(src2)) | OP_LEFT2_RIGHT1 (src1, src2, src3) -> SET (slot.(dst) , ns.concat3 slot1.(src1) slot1.(src2) slot2.(src3)) | OP_LEFT1_RIGHT2 (src1, src2, src3) -> SET (slot.(dst) , ns.concat3 slot1.(src1) slot2.(src2) slot2.(src3)); | OP_LEFT2_RIGHT2 (src1, src2, src3, src4) -> SET (slot.(dst) , ns.concat4 slot1.(src1) slot1.(src2) slot2.(src3) slot2.(src4)) | OP_SELF _ -> LOG(__ "res-jit" 1 "Putting Node %i in the result set@\n" (Node.to_int t)); slot.(dst) <- ns.singleton t | OP_SELF_LEFT1 src -> LOG(__ "res-jit" 1 "Putting Node %i in the result set@\n" (Node.to_int t)); slot.(dst) <- ns.cons t slot1.(src) | OP_SELF_LEFT2 (src1, src2) -> LOG(__ "res-jit" 1 "Putting Node %i in the result set@\n" (Node.to_int t)); slot.(dst) <- ns.conscat t slot1.(src1) slot1.(src2) | OP_SELF_RIGHT1 src -> LOG(__ "res-jit" 1 "Putting Node %i in the result set@\n" (Node.to_int t)); slot.(dst) <- ns.cons t slot2.(src) | OP_SELF_RIGHT2 (src1, src2) -> LOG(__ "res-jit" 1 "Putting Node %i in the result set@\n" (Node.to_int t)); slot.(dst) <- ns.conscat t slot2.(src1) slot2.(src2) | OP_SELF_LEFT1_RIGHT1 (src1, src2) -> LOG(__ "res-jit" 1 "Putting Node %i in the result set@\n" (Node.to_int t)); slot.(dst) <- ns.conscat t slot1.(src1) slot2.(src2) | OP_SELF_LEFT2_RIGHT1 (src1, src2, src3) -> LOG(__ "res-jit" 1 "Putting Node %i in the result set@\n" (Node.to_int t)); slot.(dst) <- ns.conscat3 t slot1.(src1) slot1.(src2) slot2.(src3) | OP_SELF_LEFT1_RIGHT2 (src1, src2, src3) -> LOG(__ "res-jit" 1 "Putting Node %i in the result set@\n" (Node.to_int t)); slot.(dst) <- ns.conscat3 t slot1.(src1) slot2.(src2) slot2.(src3) | OP_SELF_LEFT2_RIGHT2 (src1, src2, src3, src4) -> LOG(__ "res-jit" 1 "Putting Node %i in the result set@\n" (Node.to_int t)); slot.(dst) <- ns.conscat4 t slot1.(src1) slot1.(src2) slot2.(src3) slot2.(src4) | OP_OTHER line -> let acc = ref ns.empty in let len = Array.length line - 1 in for j = 0 to len do acc := exec_instr slot1 slot2 t line.(j) !acc done; slot.(dst) <- !acc DEFINE EXEC_REC_TEMPLATE = (match code with | Nil -> () | Cons(dst, opcode, code1) -> LOG(__ "res-jit" 3 " %a := %a" State.print dst print_opcode opcode; ); exec_code slot slot1 slot2 t dst opcode; begin match code1 with | Nil -> () | Cons(dst, opcode, code1) -> LOG(__ "res-jit" 3 " %a := %a" State.print dst print_opcode opcode; ); exec_code slot slot1 slot2 t dst opcode; exec slot slot1 slot2 t code1 end) DEFINE EXEC_TEMPLATE = (LOG(__ "res-jit" 3 "Node %i:@\nLEFT : %a@\nRIGHT : %a" (Node.to_int t) print slot1 print slot2 ); exec slot slot1 slot2 t code; LOG(__ "res-jit" 3 "RES : %a" print slot)) module type S = sig module NS : NodeSet.S type t = NS.t array val exec : t -> t -> t -> Tree.node -> code -> unit val print : Format.formatter -> t -> unit val var : int -> t -> t val close : ((int*State.t, NS.t) Hashtbl.t) -> t -> t val is_open : t -> bool end module Count = struct module NS = NodeSet.Count type t = NodeSet.Count.t array let print fmt s = PRINT_TEMPLATE(NS) let exec_instr = EXEC_INSTR_TEMPLATE(NodeSet.Count) let exec_code = EXEC_CODE_TEMPLATE(NodeSet.Count) let rec exec slot slot1 slot2 t code = EXEC_REC_TEMPLATE let var _ x = x let close _ x = x let is_open _ = false end module Mat = struct module NS = NodeSet.Mat type t = NodeSet.Mat.t array let print fmt s = PRINT_TEMPLATE(NS) let exec_instr = EXEC_INSTR_TEMPLATE(NodeSet.Mat) let exec_code = EXEC_CODE_TEMPLATE(NodeSet.Mat) let rec exec slot slot1 slot2 t code = EXEC_REC_TEMPLATE let var _ x = x let close _ x = x let is_open _ = false end module Make(U : NodeSet.S) = struct module NS = U type t = U.t array let print fmt s = PRINT_TEMPLATE(NS) let exec_instr = EXEC_INSTR_TEMPLATE(U) let exec_code = EXEC_CODE_TEMPLATE(U) let rec exec slot slot1 slot2 t code = EXEC_REC_TEMPLATE let exec slot slot1 slot2 t code = EXEC_TEMPLATE let var i t = Array.mapi (fun j _ -> NS.var (i,j)) t let close h t = Array.map (NS.close h) t let is_open t = List.exists NS.is_open (Array.to_list t) end