(***********************************************************************) (* *) (* TAToo *) (* *) (* Kim Nguyen, LRI UMR8623 *) (* Université Paris-Sud & CNRS *) (* *) (* Copyright 2010-2013 Université Paris-Sud and Centre National de la *) (* Recherche Scientifique. All rights reserved. This file is *) (* distributed under the terms of the GNU Lesser General Public *) (* License, with the special exception on linking described in file *) (* ../LICENSE. *) (* *) (***********************************************************************) INCLUDE "utils.ml" open Format type predicate = | First_child | Next_sibling | Parent | Previous_sibling | Stay | Is_first_child | Is_next_sibling | Is of (Tree.NodeKind.t) | Has_first_child | Has_next_sibling let is_move p = match p with | First_child | Next_sibling | Parent | Previous_sibling | Stay -> true | _ -> false type atom = predicate * bool * State.t module Atom : (Formula.ATOM with type data = atom) = struct module Node = struct type t = atom let equal n1 n2 = n1 = n2 let hash n = Hashtbl.hash n end include Hcons.Make(Node) let print ppf a = let p, b, q = a.node in if not b then fprintf ppf "%s" Pretty.lnot; match p with | First_child -> fprintf ppf "FC(%a)" State.print q | Next_sibling -> fprintf ppf "NS(%a)" State.print q | Parent -> fprintf ppf "FC%s(%a)" Pretty.inverse State.print q | Previous_sibling -> fprintf ppf "NS%s(%a)" Pretty.inverse State.print q | Stay -> fprintf ppf "%s(%a)" Pretty.epsilon State.print q | Is_first_child -> fprintf ppf "FC%s?" Pretty.inverse | Is_next_sibling -> fprintf ppf "NS%s?" Pretty.inverse | Is k -> fprintf ppf "is-%a?" Tree.NodeKind.print k | Has_first_child -> fprintf ppf "FC?" | Has_next_sibling -> fprintf ppf "NS?" let neg a = let p, b, q = a.node in make (p, not b, q) end module SFormula = struct include Formula.Make(Atom) open Tree.NodeKind let mk_atom a b c = atom_ (Atom.make (a,b,c)) let mk_kind k = mk_atom (Is k) true State.dummy let has_first_child = (mk_atom Has_first_child true State.dummy) let has_next_sibling = (mk_atom Has_next_sibling true State.dummy) let is_first_child = (mk_atom Is_first_child true State.dummy) let is_next_sibling = (mk_atom Is_next_sibling true State.dummy) let is_attribute = (mk_atom (Is Attribute) true State.dummy) let is_element = (mk_atom (Is Element) true State.dummy) let is_processing_instruction = (mk_atom (Is ProcessingInstruction) true State.dummy) let is_comment = (mk_atom (Is Comment) true State.dummy) let first_child q = and_ (mk_atom First_child true q) has_first_child let next_sibling q = and_ (mk_atom Next_sibling true q) has_next_sibling let parent q = and_ (mk_atom Parent true q) is_first_child let previous_sibling q = and_ (mk_atom Previous_sibling true q) is_next_sibling let stay q = (mk_atom Stay true q) let get_states phi = fold (fun phi acc -> match expr phi with | Formula.Atom a -> let _, _, q = Atom.node a in if q != State.dummy then StateSet.add q acc else acc | _ -> acc ) phi StateSet.empty end module Transition = Hcons.Make (struct type t = State.t * QNameSet.t * SFormula.t let equal (a, b, c) (d, e, f) = a == d && b == e && c == f let hash (a, b, c) = HASHINT4 (PRIME1, a, ((QNameSet.uid b) :> int), ((SFormula.uid c) :> int)) end) module TransList : sig include Hlist.S with type elt = Transition.t val print : Format.formatter -> ?sep:string -> t -> unit end = struct include Hlist.Make(Transition) let print ppf ?(sep="\n") l = iter (fun t -> let q, lab, f = Transition.node t in fprintf ppf "%a, %a -> %a%s" State.print q QNameSet.print lab SFormula.print f sep) l end type node_summary = int let dummy_summary = -1 (* 4444444444443210 4 -> kind 3 -> is_left 2 -> is_right 1 -> has_left 0 -> has_right *) let has_right (s : node_summary) : bool = Obj.magic (s land 1) let has_left (s : node_summary) : bool = Obj.magic ((s lsr 1) land 1) let is_right (s : node_summary) : bool = Obj.magic ((s lsr 2) land 1) let is_left (s : node_summary) : bool = Obj.magic ((s lsr 3) land 1) let kind (s : node_summary ) : Tree.NodeKind.t = Obj.magic (s lsr 4) let node_summary is_left is_right has_left has_right kind = ((Obj.magic kind) lsl 4) lor ((Obj.magic is_left) lsl 3) lor ((Obj.magic is_right) lsl 2) lor ((Obj.magic has_left) lsl 1) lor (Obj.magic has_right) type config = { sat : StateSet.t; unsat : StateSet.t; todo : TransList.t; summary : node_summary; } module Config = Hcons.Make(struct type t = config let equal c d = c == d || c.sat == d.sat && c.unsat == d.unsat && c.todo == d.todo && c.summary == d.summary let hash c = HASHINT4((c.sat.StateSet.id :> int), (c.unsat.StateSet.id :> int), (c.todo.TransList.id :> int), c.summary) end ) type t = { id : Uid.t; mutable states : StateSet.t; mutable selection_states: StateSet.t; transitions: (State.t, (QNameSet.t*SFormula.t) list) Hashtbl.t; mutable cache2 : TransList.t Cache.N2.t; mutable cache4 : Config.t Cache.N4.t; } let next = Uid.make_maker () let dummy2 = TransList.cons (Transition.make (State.dummy,QNameSet.empty, SFormula.false_)) TransList.nil let dummy_config = Config.make { sat = StateSet.empty; unsat = StateSet.empty; todo = TransList.nil; summary = dummy_summary } let create s ss = let auto = { id = next (); states = s; selection_states = ss; transitions = Hashtbl.create 17; cache2 = Cache.N2.create dummy2; cache4 = Cache.N4.create dummy_config; } in at_exit (fun () -> let n4 = ref 0 in let n2 = ref 0 in Cache.N2.iteri (fun _ _ _ b -> if b then incr n2) auto.cache2; Cache.N4.iteri (fun _ _ _ _ _ b -> if b then incr n4) auto.cache4; Logger.msg `STATS "automaton %i, cache2: %i entries, cache6: %i entries" (auto.id :> int) !n2 !n4; let c2l, c2u = Cache.N2.stats auto.cache2 in let c4l, c4u = Cache.N4.stats auto.cache4 in Logger.msg `STATS "cache2: length: %i, used: %i, occupation: %f" c2l c2u (float c2u /. float c2l); Logger.msg `STATS "cache4: length: %i, used: %i, occupation: %f" c4l c4u (float c4u /. float c4l) ); auto let reset a = a.cache4 <- Cache.N4.create (Cache.N4.dummy a.cache4) let full_reset a = reset a; a.cache2 <- Cache.N2.create (Cache.N2.dummy a.cache2) let get_trans_aux a tag states = StateSet.fold (fun q acc0 -> try let trs = Hashtbl.find a.transitions q in List.fold_left (fun acc1 (labs, phi) -> if QNameSet.mem tag labs then TransList.cons (Transition.make (q, labs, phi)) acc1 else acc1) acc0 trs with Not_found -> acc0 ) states TransList.nil let get_trans a tag states = let trs = Cache.N2.find a.cache2 (tag.QName.id :> int) (states.StateSet.id :> int) in if trs == dummy2 then let trs = get_trans_aux a tag states in (Cache.N2.add a.cache2 (tag.QName.id :> int) (states.StateSet.id :> int) trs; trs) else trs let simplify_atom atom pos q { Config.node=config; _ } = if (pos && StateSet.mem q config.sat) || ((not pos) && StateSet.mem q config.unsat) then SFormula.true_ else if (pos && StateSet.mem q config.unsat) || ((not pos) && StateSet.mem q config.sat) then SFormula.false_ else atom let eval_form phi fcs nss ps ss summary = let rec loop phi = begin match SFormula.expr phi with Formula.True | Formula.False -> phi | Formula.Atom a -> let p, b, q = Atom.node a in begin match p with | First_child -> simplify_atom phi b q fcs | Next_sibling -> simplify_atom phi b q nss | Parent | Previous_sibling -> simplify_atom phi b q ps | Stay -> simplify_atom phi b q ss | Is_first_child -> SFormula.of_bool (b == (is_left summary)) | Is_next_sibling -> SFormula.of_bool (b == (is_right summary)) | Is k -> SFormula.of_bool (b == (k == (kind summary))) | Has_first_child -> SFormula.of_bool (b == (has_left summary)) | Has_next_sibling -> SFormula.of_bool (b == (has_right summary)) end | Formula.And(phi1, phi2) -> SFormula.and_ (loop phi1) (loop phi2) | Formula.Or (phi1, phi2) -> SFormula.or_ (loop phi1) (loop phi2) end in loop phi let eval_trans auto fcs nss ps ss = let fcsid = (fcs.Config.id :> int) in let nssid = (nss.Config.id :> int) in let psid = (ps.Config.id :> int) in let rec loop old_config = let oid = (old_config.Config.id :> int) in let res = let res = Cache.N4.find auto.cache4 oid fcsid nssid psid in if res != dummy_config then res else let { sat = old_sat; unsat = old_unsat; todo = old_todo; summary = old_summary } = old_config.Config.node in let sat, unsat, removed, kept, todo = TransList.fold (fun trs acc -> let q, lab, phi = Transition.node trs in let a_sat, a_unsat, a_rem, a_kept, a_todo = acc in if StateSet.mem q a_sat || StateSet.mem q a_unsat then acc else let new_phi = eval_form phi fcs nss ps old_config old_summary in if SFormula.is_true new_phi then StateSet.add q a_sat, a_unsat, StateSet.add q a_rem, a_kept, a_todo else if SFormula.is_false new_phi then a_sat, StateSet.add q a_unsat, StateSet.add q a_rem, a_kept, a_todo else let new_tr = Transition.make (q, lab, new_phi) in (a_sat, a_unsat, a_rem, StateSet.add q a_kept, (TransList.cons new_tr a_todo)) ) old_todo (old_sat, old_unsat, StateSet.empty, StateSet.empty, TransList.nil) in (* States that have been removed from the todo list and not kept are now unsatisfiable *) let unsat = StateSet.union unsat (StateSet.diff removed kept) in (* States that were found once to be satisfiable remain so *) let unsat = StateSet.diff unsat sat in let new_config = Config.make { old_config.Config.node with sat; unsat; todo; } in Cache.N4.add auto.cache4 oid fcsid nssid psid new_config; new_config in if res == old_config then res else loop res in loop ss (* [add_trans a q labels f] adds a transition [(q,labels) -> f] to the automaton [a] but ensures that transitions remains pairwise disjoint *) let add_trans a q s f = let trs = try Hashtbl.find a.transitions q with Not_found -> [] in let cup, ntrs = List.fold_left (fun (acup, atrs) (labs, phi) -> let lab1 = QNameSet.inter labs s in let lab2 = QNameSet.diff labs s in let tr1 = if QNameSet.is_empty lab1 then [] else [ (lab1, SFormula.or_ phi f) ] in let tr2 = if QNameSet.is_empty lab2 then [] else [ (lab2, SFormula.or_ phi f) ] in (QNameSet.union acup labs, tr1@ tr2 @ atrs) ) (QNameSet.empty, []) trs in let rem = QNameSet.diff s cup in let ntrs = if QNameSet.is_empty rem then ntrs else (rem, f) :: ntrs in Hashtbl.replace a.transitions q ntrs let _pr_buff = Buffer.create 50 let _str_fmt = formatter_of_buffer _pr_buff let _flush_str_fmt () = pp_print_flush _str_fmt (); let s = Buffer.contents _pr_buff in Buffer.clear _pr_buff; s let print fmt a = fprintf fmt "Internal UID: %i@\n\ States: %a@\n\ Selection states: %a@\n\ Alternating transitions:@\n" (a.id :> int) StateSet.print a.states StateSet.print a.selection_states; let trs = Hashtbl.fold (fun q t acc -> List.fold_left (fun acc (s , f) -> (q,s,f)::acc) acc t) a.transitions [] in let sorted_trs = List.stable_sort (fun (q1, s1, _) (q2, s2, _) -> let c = State.compare q1 q2 in - (if c == 0 then QNameSet.compare s1 s2 else c)) trs in let _ = _flush_str_fmt () in let strs_strings, max_pre, max_all = List.fold_left (fun (accl, accp, acca) (q, s, f) -> let s1 = State.print _str_fmt q; _flush_str_fmt () in let s2 = QNameSet.print _str_fmt s; _flush_str_fmt () in let s3 = SFormula.print _str_fmt f; _flush_str_fmt () in let pre = Pretty.length s1 + Pretty.length s2 in let all = Pretty.length s3 in ( (q, s1, s2, s3) :: accl, max accp pre, max acca all) ) ([], 0, 0) sorted_trs in let line = Pretty.line (max_all + max_pre + 6) in let prev_q = ref State.dummy in fprintf fmt "%s@\n" line; List.iter (fun (q, s1, s2, s3) -> if !prev_q != q && !prev_q != State.dummy then fprintf fmt "%s@\n" line; prev_q := q; fprintf fmt "%s, %s" s1 s2; fprintf fmt "%s" (Pretty.padding (max_pre - Pretty.length s1 - Pretty.length s2)); fprintf fmt " %s %s@\n" Pretty.right_arrow s3; ) strs_strings; fprintf fmt "%s@\n" line (* [complete transitions a] ensures that for each state q and each symbols s in the alphabet, a transition q, s exists. (adding q, s -> F when necessary). *) let complete_transitions a = StateSet.iter (fun q -> let qtrans = Hashtbl.find a.transitions q in let rem = List.fold_left (fun rem (labels, _) -> QNameSet.diff rem labels) QNameSet.any qtrans in let nqtrans = if QNameSet.is_empty rem then qtrans else (rem, SFormula.false_) :: qtrans in Hashtbl.replace a.transitions q nqtrans ) a.states let cleanup_states a = let memo = ref StateSet.empty in let rec loop q = if not (StateSet.mem q !memo) then begin memo := StateSet.add q !memo; let trs = try Hashtbl.find a.transitions q with Not_found -> [] in List.iter (fun (_, phi) -> StateSet.iter loop (SFormula.get_states phi)) trs end in StateSet.iter loop a.selection_states; let unused = StateSet.diff a.states !memo in StateSet.iter (fun q -> Hashtbl.remove a.transitions q) unused; a.states <- !memo (* [normalize_negations a] removes negative atoms in the formula complementing the sub-automaton in the negative states. [TODO check the meaning of negative upward arrows] *) let normalize_negations auto = let memo_state = Hashtbl.create 17 in let todo = Queue.create () in let rec flip b f = match SFormula.expr f with Formula.True | Formula.False -> if b then f else SFormula.not_ f | Formula.Or(f1, f2) -> (if b then SFormula.or_ else SFormula.and_)(flip b f1) (flip b f2) | Formula.And(f1, f2) -> (if b then SFormula.and_ else SFormula.or_)(flip b f1) (flip b f2) | Formula.Atom(a) -> begin let l, b', q = Atom.node a in if q == State.dummy then if b then f else SFormula.not_ f else if b == b' then begin (* a appears positively, either no negation or double negation *) if not (Hashtbl.mem memo_state (q,b)) then Queue.add (q,true) todo; SFormula.atom_ (Atom.make (l, true, q)) end else begin (* need to reverse the atom either we have a positive state deep below a negation or we have a negative state in a positive formula b' = sign of the state b = sign of the enclosing formula *) let not_q = try (* does the inverted state of q exist ? *) Hashtbl.find memo_state (q, false) with Not_found -> (* create a new state and add it to the todo queue *) let nq = State.make () in auto.states <- StateSet.add nq auto.states; Hashtbl.add memo_state (q, false) nq; Queue.add (q, false) todo; nq in SFormula.atom_ (Atom.make (l, true, not_q)) end end in (* states that are not reachable from a selection stat are not interesting *) StateSet.iter (fun q -> Queue.add (q, true) todo) auto.selection_states; while not (Queue.is_empty todo) do let (q, b) as key = Queue.pop todo in let q' = try Hashtbl.find memo_state key with Not_found -> let nq = if b then q else let nq = State.make () in auto.states <- StateSet.add nq auto.states; nq in Hashtbl.add memo_state key nq; nq in let trans = Hashtbl.find auto.transitions q in let trans' = List.map (fun (lab, f) -> lab, flip b f) trans in Hashtbl.replace auto.transitions q' trans'; done; cleanup_states auto