(***********************************************************************) (* *) (* TAToo *) (* *) (* Kim Nguyen, LRI UMR8623 *) (* Université Paris-Sud & CNRS *) (* *) (* Copyright 2010-2013 Université Paris-Sud and Centre National de la *) (* Recherche Scientifique. All rights reserved. This file is *) (* distributed under the terms of the GNU Lesser General Public *) (* License, with the special exception on linking described in file *) (* ../LICENSE. *) (* *) (***********************************************************************) INCLUDE "utils.ml" open Format open Misc type move = [ `First_child | `Next_sibling | `Parent | `Previous_sibling | `Stay ] module Move = struct type t = move type 'a table = 'a array let idx = function | `First_child -> 0 | `Next_sibling -> 1 | `Parent -> 2 | `Previous_sibling -> 3 | `Stay -> 4 let ridx = function | 0 -> `First_child | 1 -> `Next_sibling | 2 -> `Parent | 3 -> `Previous_sibling | 4 -> `Stay | _ -> assert false let create_table a = Array.make 5 a let get m k = m.(idx k) let set m k v = m.(idx k) <- v let iter f m = Array.iteri (fun i v -> f (ridx i) v) m let fold f m acc = let acc = ref acc in iter (fun i v -> acc := f i v !acc) m; !acc let for_all p m = try iter (fun i v -> if not (p i v) then raise Exit) m; true with Exit -> false let for_all2 p m1 m2 = try for i = 0 to 4 do let v1 = m1.(i) and v2 = m2.(i) in if not (p (ridx i) v1 v2) then raise Exit done; true with Exit -> false let exists p m = try iter (fun i v -> if p i v then raise Exit) m; false with Exit -> true let print ppf m = match m with `First_child -> fprintf ppf "%s" Pretty.down_arrow | `Next_sibling -> fprintf ppf "%s" Pretty.right_arrow | `Parent -> fprintf ppf "%s" Pretty.up_arrow | `Previous_sibling -> fprintf ppf "%s" Pretty.left_arrow | `Stay -> fprintf ppf "%s" Pretty.bullet let print_table pr_e ppf m = iter (fun i v -> fprintf ppf "%a: %a" print i pr_e v; if (idx i) < 4 then fprintf ppf ", ") m end type predicate = Move of move * State.t | Is_first_child | Is_next_sibling | Is of Tree.NodeKind.t | Has_first_child | Has_next_sibling module Atom = struct module Node = struct type t = predicate let equal n1 n2 = n1 = n2 let hash n = Hashtbl.hash n end include Hcons.Make(Node) let print ppf a = match a.node with | Move (m, q) -> fprintf ppf "%a%a" Move.print m State.print q | Is_first_child -> fprintf ppf "%s?" Pretty.up_arrow | Is_next_sibling -> fprintf ppf "%s?" Pretty.left_arrow | Is k -> fprintf ppf "is-%a?" Tree.NodeKind.print k | Has_first_child -> fprintf ppf "%s?" Pretty.down_arrow | Has_next_sibling -> fprintf ppf "%s?" Pretty.right_arrow end module Formula = struct include Boolean.Make(Atom) open Tree.NodeKind let mk_atom a = atom_ (Atom.make a) let is k = mk_atom (Is k) let has_first_child = mk_atom Has_first_child let has_next_sibling = mk_atom Has_next_sibling let is_first_child = mk_atom Is_first_child let is_next_sibling = mk_atom Is_next_sibling let is_attribute = mk_atom (Is Attribute) let is_element = mk_atom (Is Element) let is_processing_instruction = mk_atom (Is ProcessingInstruction) let is_comment = mk_atom (Is Comment) let mk_move m q = mk_atom (Move(m,q)) let first_child q = and_ (mk_move `First_child q) has_first_child let next_sibling q = and_ (mk_move `Next_sibling q) has_next_sibling let parent q = and_ (mk_move `Parent q) is_first_child let previous_sibling q = and_ (mk_move `Previous_sibling q) is_next_sibling let stay q = mk_move `Stay q let get_states_by_move phi = let table = Move.create_table StateSet.empty in iter (fun phi -> match expr phi with | Boolean.Atom ({ Atom.node = Move(v,q) ; _ }, _) -> let s = Move.get table v in Move.set table v (StateSet.add q s) | _ -> () ) phi; table let get_states phi = let table = get_states_by_move phi in Move.fold (fun _ s acc -> StateSet.union s acc) table StateSet.empty end module Transition = struct include Hcons.Make (struct type t = State.t * QNameSet.t * Formula.t let equal (a, b, c) (d, e, f) = a == d && b == e && c == f let hash (a, b, c) = HASHINT4 (PRIME1, a, ((QNameSet.uid b) :> int), ((Formula.uid c) :> int)) end) let print ppf t = let q, l, f = t.node in fprintf ppf "%a, %a %s %a" State.print q QNameSet.print l Pretty.double_right_arrow Formula.print f end module TransList : sig include Hlist.S with type elt = Transition.t val print : Format.formatter -> ?sep:string -> t -> unit end = struct include Hlist.Make(Transition) let print ppf ?(sep="\n") l = iter (fun t -> let q, lab, f = Transition.node t in fprintf ppf "%a, %a → %a%s" State.print q QNameSet.print lab Formula.print f sep) l end type t = { id : Uid.t; mutable states : StateSet.t; mutable starting_states : StateSet.t; mutable selecting_states: StateSet.t; transitions: (State.t, (QNameSet.t*Formula.t) list) Hashtbl.t; mutable ranked_states : StateSet.t array } let uid t = t.id let get_states a = a.states let get_starting_states a = a.starting_states let get_selecting_states a = a.selecting_states let get_states_by_rank a = a.ranked_states let get_max_rank a = Array.length a.ranked_states - 1 let _pr_buff = Buffer.create 50 let _str_fmt = formatter_of_buffer _pr_buff let _flush_str_fmt () = pp_print_flush _str_fmt (); let s = Buffer.contents _pr_buff in Buffer.clear _pr_buff; s let print fmt a = let _ = _flush_str_fmt() in fprintf fmt "Internal UID: %i@\n\ States: %a@\n\ Number of states: %i@\n\ Starting states: %a@\n\ Selection states: %a@\n\ Ranked states: %a@\n\ Alternating transitions:@\n" (a.id :> int) StateSet.print a.states (StateSet.cardinal a.states) StateSet.print a.starting_states StateSet.print a.selecting_states (let r = ref 0 in Pretty.print_array ~sep:", " (fun ppf s -> fprintf ppf "%i:%a" !r StateSet.print s; incr r)) a.ranked_states; let trs = Hashtbl.fold (fun q t acc -> List.fold_left (fun acc (s , f) -> (q,s,f)::acc) acc t) a.transitions [] in let sorted_trs = List.stable_sort (fun (q1, s1, _) (q2, s2, _) -> let c = State.compare q2 q1 in if c == 0 then QNameSet.compare s2 s1 else c) trs in let _ = _flush_str_fmt () in let strs_strings, max_pre, max_all = List.fold_left (fun (accl, accp, acca) (q, s, f) -> let s1 = State.print _str_fmt q; _flush_str_fmt () in let s2 = QNameSet.print _str_fmt s; _flush_str_fmt () in let s3 = Formula.print _str_fmt f; _flush_str_fmt () in let pre = Pretty.length s1 + Pretty.length s2 in let all = Pretty.length s3 in ( (q, s1, s2, s3) :: accl, max accp pre, max acca all) ) ([], 0, 0) sorted_trs in let line = Pretty.line (max_all + max_pre + 6) in let prev_q = ref State.dummy in fprintf fmt "%s@\n" line; List.iter (fun (q, s1, s2, s3) -> if !prev_q != q && !prev_q != State.dummy then fprintf fmt "%s@\n" line; prev_q := q; fprintf fmt "%s, %s" s1 s2; fprintf fmt "%s" (Pretty.padding (max_pre - Pretty.length s1 - Pretty.length s2)); fprintf fmt " %s %s@\n" Pretty.right_arrow s3; ) strs_strings; fprintf fmt "%s@\n" line let get_trans a tag states = StateSet.fold (fun q acc0 -> try let trs = Hashtbl.find a.transitions q in List.fold_left (fun acc1 (labs, phi) -> if QNameSet.mem tag labs then TransList.cons (Transition.make (q, labs, phi)) acc1 else acc1) acc0 trs with Not_found -> acc0 ) states TransList.nil let get_form a tag q = try let trs = Hashtbl.find a.transitions q in List.fold_left (fun aphi (labs, phi) -> if QNameSet.mem tag labs then Formula.or_ aphi phi else aphi ) Formula.false_ trs with Not_found -> Formula.false_ (* [complete transitions a] ensures that for each state q and each symbols s in the alphabet, a transition q, s exists. (adding q, s -> F when necessary). *) let complete_transitions a = StateSet.iter (fun q -> if StateSet.mem q a.starting_states then () else let qtrans = Hashtbl.find a.transitions q in let rem = List.fold_left (fun rem (labels, _) -> QNameSet.diff rem labels) QNameSet.any qtrans in let nqtrans = if QNameSet.is_empty rem then qtrans else (rem, Formula.false_) :: qtrans in Hashtbl.replace a.transitions q nqtrans ) a.states (* [cleanup_states] remove states that do not lead to a selecting states *) let cleanup_states a = let memo = ref StateSet.empty in let rec loop q = if not (StateSet.mem q !memo) then begin memo := StateSet.add q !memo; let trs = try Hashtbl.find a.transitions q with Not_found -> [] in List.iter (fun (_, phi) -> StateSet.iter loop (Formula.get_states phi)) trs end in StateSet.iter loop a.selecting_states; let unused = StateSet.diff a.states !memo in StateSet.iter (fun q -> Hashtbl.remove a.transitions q) unused; a.states <- !memo (* [normalize_negations a] removes negative atoms in the formula complementing the sub-automaton in the negative states. [TODO check the meaning of negative upward arrows] *) let normalize_negations auto = let memo_state = Hashtbl.create 17 in let todo = Queue.create () in let rec flip b f = match Formula.expr f with Boolean.True | Boolean.False -> if b then f else Formula.not_ f | Boolean.Or(f1, f2) -> (if b then Formula.or_ else Formula.and_)(flip b f1) (flip b f2) | Boolean.And(f1, f2) -> (if b then Formula.and_ else Formula.or_)(flip b f1) (flip b f2) | Boolean.Atom(a, b') -> begin match a.Atom.node with | Move (m, q) -> if b == b' then begin (* a appears positively, either no negation or double negation *) if not (Hashtbl.mem memo_state (q,b)) then Queue.add (q,true) todo; Formula.mk_atom (Move(m, q)) end else begin (* need to reverse the atom either we have a positive state deep below a negation or we have a negative state in a positive formula b' = sign of the state b = sign of the enclosing formula *) let not_q = try (* does the inverted state of q exist ? *) Hashtbl.find memo_state (q, false) with Not_found -> (* create a new state and add it to the todo queue *) let nq = State.make () in auto.states <- StateSet.add nq auto.states; Hashtbl.add memo_state (q, false) nq; Queue.add (q, false) todo; nq in Formula.mk_atom (Move (m,not_q)) end | _ -> if b then f else Formula.not_ f end in (* states that are not reachable from a selection stat are not interesting *) StateSet.iter (fun q -> Queue.add (q, true) todo) auto.selecting_states; while not (Queue.is_empty todo) do let (q, b) as key = Queue.pop todo in if not (StateSet.mem q auto.starting_states) then let q' = try Hashtbl.find memo_state key with Not_found -> let nq = if b then q else let nq = State.make () in auto.states <- StateSet.add nq auto.states; nq in Hashtbl.add memo_state key nq; nq in let trans = try Hashtbl.find auto.transitions q with Not_found -> [] in let trans' = List.map (fun (lab, f) -> lab, flip b f) trans in Hashtbl.replace auto.transitions q' trans'; done; cleanup_states auto (* [compute_dependencies auto] returns a hash table storing for each states [q] a Move.table containing the set of states on which [q] depends (loosely). [q] depends on [q'] if there is a transition [q, {...} -> phi], where [q'] occurs in [phi]. *) let compute_dependencies auto = let edges = Hashtbl.create 17 in StateSet.iter (fun q -> Hashtbl.add edges q (Move.create_table StateSet.empty)) auto.starting_states; Hashtbl.iter (fun q trans -> let moves = try Hashtbl.find edges q with Not_found -> let m = Move.create_table StateSet.empty in Hashtbl.add edges q m; m in List.iter (fun (_, phi) -> let m_phi = Formula.get_states_by_move phi in Move.iter (fun m set -> Move.set moves m (StateSet.union set (Move.get moves m))) m_phi) trans) auto.transitions; edges let compute_rank auto = let dependencies = compute_dependencies auto in let upward = [ `Stay ; `Parent ; `Previous_sibling ] in let downward = [ `Stay; `First_child; `Next_sibling ] in let swap dir = if dir == upward then downward else upward in let is_satisfied dir q t = Move.for_all (fun d set -> if List.mem d dir then StateSet.(is_empty (remove q set)) else StateSet.is_empty set) t in let update_dependencies dir initacc = let rec loop acc = let new_acc = Hashtbl.fold (fun q deps acc -> let to_remove = StateSet.union acc initacc in List.iter (fun m -> Move.set deps m (StateSet.diff (Move.get deps m) to_remove) ) dir; if is_satisfied dir q deps then StateSet.add q acc else acc ) dependencies acc in if acc == new_acc then new_acc else loop new_acc in let satisfied = loop StateSet.empty in StateSet.iter (fun q -> Hashtbl.remove dependencies q) satisfied; satisfied in let current_states = ref StateSet.empty in let rank_list = ref [] in let rank = ref 0 in let current_dir = ref upward in let detect_cycle = ref 0 in while Hashtbl.length dependencies != 0 do let new_sat = update_dependencies !current_dir !current_states in if StateSet.is_empty new_sat then incr detect_cycle; if !detect_cycle > 2 then assert false; rank_list := (!rank, new_sat) :: !rank_list; rank := !rank + 1; current_dir := swap !current_dir; current_states := StateSet.union new_sat !current_states; done; let by_rank = Hashtbl.create 17 in List.iter (fun (r,s) -> let set = try Hashtbl.find by_rank r with Not_found -> StateSet.empty in Hashtbl.replace by_rank r (StateSet.union s set)) !rank_list; auto.ranked_states <- Array.init (Hashtbl.length by_rank) (fun i -> Hashtbl.find by_rank i) module Builder = struct type auto = t type t = auto let next = Uid.make_maker () let make () = let auto = { id = next (); states = StateSet.empty; starting_states = StateSet.empty; selecting_states = StateSet.empty; transitions = Hashtbl.create MED_H_SIZE; ranked_states = [| |] } in auto let add_state a ?(starting=false) ?(selecting=false) q = a.states <- StateSet.add q a.states; if starting then a.starting_states <- StateSet.add q a.starting_states; if selecting then a.selecting_states <- StateSet.add q a.selecting_states let add_trans a q s f = if not (StateSet.mem q a.states) then add_state a q; let trs = try Hashtbl.find a.transitions q with Not_found -> [] in let cup, ntrs = List.fold_left (fun (acup, atrs) (labs, phi) -> let lab1 = QNameSet.inter labs s in let lab2 = QNameSet.diff labs s in let tr1 = if QNameSet.is_empty lab1 then [] else [ (lab1, Formula.or_ phi f) ] in let tr2 = if QNameSet.is_empty lab2 then [] else [ (lab2, Formula.or_ phi f) ] in (QNameSet.union acup labs, tr1@ tr2 @ atrs) ) (QNameSet.empty, []) trs in let rem = QNameSet.diff s cup in let ntrs = if QNameSet.is_empty rem then ntrs else (rem, f) :: ntrs in Hashtbl.replace a.transitions q ntrs let finalize a = complete_transitions a; normalize_negations a; compute_rank a; a end let map_set f s = StateSet.fold (fun q a -> StateSet.add (f q) a) s StateSet.empty let map_hash fk fv h = let h' = Hashtbl.create (Hashtbl.length h) in let () = Hashtbl.iter (fun k v -> Hashtbl.add h' (fk k) (fv v)) h in h' let rec map_form f phi = match Formula.expr phi with | Boolean.Or(phi1, phi2) -> Formula.or_ (map_form f phi1) (map_form f phi2) | Boolean.And(phi1, phi2) -> Formula.and_ (map_form f phi1) (map_form f phi2) | Boolean.Atom({ Atom.node = Move(m,q); _}, b) -> let a = Formula.mk_atom (Move (m,f q)) in if b then a else Formula.not_ a | _ -> phi let rename_states mapper a = let rename q = try Hashtbl.find mapper q with Not_found -> q in { Builder.make () with states = map_set rename a.states; starting_states = map_set rename a.starting_states; selecting_states = map_set rename a.selecting_states; transitions = map_hash rename (fun l -> (List.map (fun (labels, form) -> (labels, map_form rename form)) l)) a.transitions; ranked_states = Array.map (map_set rename) a.ranked_states } let copy a = let mapper = Hashtbl.create MED_H_SIZE in let () = StateSet.iter (fun q -> Hashtbl.add mapper q (State.make())) a.states in rename_states mapper a let concat a1 a2 = let a1 = copy a1 in let a2 = copy a2 in let link_phi = StateSet.fold (fun q phi -> Formula.(or_ (stay q) phi)) a1.selecting_states Formula.false_ in Hashtbl.iter (fun q trs -> Hashtbl.add a1.transitions q trs) a2.transitions; StateSet.iter (fun q -> Hashtbl.replace a1.transitions q [(QNameSet.any, link_phi)]) a2.starting_states; let a = { a1 with states = StateSet.union a1.states a2.states; selecting_states = a2.selecting_states; transitions = a1.transitions; } in compute_rank a; a let merge a1 a2 = let a1 = copy a1 in let a2 = copy a2 in let a = { a1 with states = StateSet.union a1.states a2.states; selecting_states = StateSet.union a1.selecting_states a2.selecting_states; starting_states = StateSet.union a1.starting_states a2.starting_states; transitions = let () = Hashtbl.iter (fun k v -> Hashtbl.add a1.transitions k v) a2.transitions in a1.transitions } in compute_rank a ; a let link a1 a2 q link_phi = let a = { a1 with states = StateSet.union a1.states a2.states; selecting_states = StateSet.singleton q; starting_states = StateSet.union a1.starting_states a2.starting_states; transitions = let () = Hashtbl.iter (fun k v -> Hashtbl.add a1.transitions k v) a2.transitions in Hashtbl.add a1.transitions q [(QNameSet.any, link_phi)]; a1.transitions } in compute_rank a; a let union a1 a2 = let a1 = copy a1 in let a2 = copy a2 in let q = State.make () in let link_phi = StateSet.fold (fun q phi -> Formula.(or_ (stay q) phi)) (StateSet.union a1.selecting_states a2.selecting_states) Formula.false_ in link a1 a2 q link_phi let inter a1 a2 = let a1 = copy a1 in let a2 = copy a2 in let q = State.make () in let link_phi = StateSet.fold (fun q phi -> Formula.(and_ (stay q) phi)) (StateSet.union a1.selecting_states a2.selecting_states) Formula.true_ in link a1 a2 q link_phi let neg a = let a = copy a in let q = State.make () in let link_phi = StateSet.fold (fun q phi -> Formula.(and_ (not_(stay q)) phi)) a.selecting_states Formula.true_ in let () = Hashtbl.add a.transitions q [(QNameSet.any, link_phi)] in let a = { a with selecting_states = StateSet.singleton q; } in normalize_negations a; compute_rank a; a let diff a1 a2 = inter a1 (neg a2)