(***********************************************************************) (* *) (* TAToo *) (* *) (* Kim Nguyen, LRI UMR8623 *) (* Université Paris-Sud & CNRS *) (* *) (* Copyright 2010-2013 Université Paris-Sud and Centre National de la *) (* Recherche Scientifique. All rights reserved. This file is *) (* distributed under the terms of the GNU Lesser General Public *) (* License, with the special exception on linking described in file *) (* ../LICENSE. *) (* *) (***********************************************************************) (* Time-stamp: *) INCLUDE "utils.ml" open Format open Utils type predicate = | First_child | Next_sibling | Parent | Previous_sibling | Stay | Is_first_child | Is_next_sibling | Is_attribute | Has_first_child | Has_next_sibling let is_move p = match p with | First_child | Next_sibling | Parent | Previous_sibling | Stay -> true | _ -> false type atom = predicate * bool * State.t module Atom : (Formula.ATOM with type data = atom) = struct module Node = struct type t = atom let equal n1 n2 = n1 = n2 let hash n = Hashtbl.hash n end include Hcons.Make(Node) let print ppf a = let p, b, q = a.node in if not b then fprintf ppf "%s" Pretty.lnot; match p with | First_child -> fprintf ppf "FC(%a)" State.print q | Next_sibling -> fprintf ppf "NS(%a)" State.print q | Parent -> fprintf ppf "FC%s(%a)" Pretty.inverse State.print q | Previous_sibling -> fprintf ppf "NS%s(%a)" Pretty.inverse State.print q | Stay -> fprintf ppf "%s(%a)" Pretty.epsilon State.print q | Is_first_child -> fprintf ppf "FC%s?" Pretty.inverse | Is_next_sibling -> fprintf ppf "NS%s?" Pretty.inverse | Is_attribute -> fprintf ppf "%s" "@?" | Has_first_child -> fprintf ppf "FC?" | Has_next_sibling -> fprintf ppf "NS?" let neg a = let p, b, q = a.node in make (p, not b, q) end module SFormula = struct include Formula.Make(Atom) let mk_atom a b c = atom_ (Atom.make (a,b,c)) let has_first_child = (mk_atom Has_first_child true State.dummy) let has_next_sibling = (mk_atom Has_next_sibling true State.dummy) let is_first_child = (mk_atom Is_first_child true State.dummy) let is_next_sibling = (mk_atom Is_next_sibling true State.dummy) let is_attribute = (mk_atom Is_attribute true State.dummy) let first_child q = and_ (mk_atom First_child true q) has_first_child let next_sibling q = and_ (mk_atom Next_sibling true q) has_next_sibling let parent q = and_ (mk_atom Parent true q) is_first_child let previous_sibling q = and_ (mk_atom Previous_sibling true q) is_next_sibling let stay q = (mk_atom Stay true q) let get_states phi = fold (fun phi acc -> match expr phi with | Formula.Atom a -> let _, _, q = Atom.node a in if q != State.dummy then StateSet.add q acc else acc | _ -> acc ) phi StateSet.empty end type t = { id : Uid.t; mutable states : StateSet.t; mutable selection_states: StateSet.t; transitions: (State.t, (QNameSet.t*SFormula.t) list) Hashtbl.t; } let next = Uid.make_maker () let create () = { id = next (); states = StateSet.empty; selection_states = StateSet.empty; transitions = Hashtbl.create 17; } let get_trans a states tag = StateSet.fold (fun q acc0 -> try let trs = Hashtbl.find a.transitions q in List.fold_left (fun acc1 (labs, phi) -> if QNameSet.mem tag labs then (q,phi)::acc1 else acc1) acc0 trs with Not_found -> acc0 ) states [] (* [add_trans a q labels f] adds a transition [(q,labels) -> f] to the automaton [a] but ensures that transitions remains pairwise disjoint *) let add_trans a q s f = let trs = try Hashtbl.find a.transitions q with Not_found -> [] in let cup, ntrs = List.fold_left (fun (acup, atrs) (labs, phi) -> let lab1 = QNameSet.inter labs s in let lab2 = QNameSet.diff labs s in let tr1 = if QNameSet.is_empty lab1 then [] else [ (lab1, SFormula.or_ phi f) ] in let tr2 = if QNameSet.is_empty lab2 then [] else [ (lab2, SFormula.or_ phi f) ] in (QNameSet.union acup labs, tr1@ tr2 @ atrs) ) (QNameSet.empty, []) trs in let rem = QNameSet.diff s cup in let ntrs = if QNameSet.is_empty rem then ntrs else (rem, f) :: ntrs in Hashtbl.replace a.transitions q ntrs let _pr_buff = Buffer.create 50 let _str_fmt = formatter_of_buffer _pr_buff let _flush_str_fmt () = pp_print_flush _str_fmt (); let s = Buffer.contents _pr_buff in Buffer.clear _pr_buff; s let print fmt a = fprintf fmt "\nInternal UID: %i@\n\ States: %a@\n\ Selection states: %a@\n\ Alternating transitions:@\n" (a.id :> int) StateSet.print a.states StateSet.print a.selection_states; let trs = Hashtbl.fold (fun q t acc -> List.fold_left (fun acc (s , f) -> (q,s,f)::acc) acc t) a.transitions [] in let sorted_trs = List.stable_sort (fun (q1, s1, _) (q2, s2, _) -> let c = State.compare q1 q2 in - (if c == 0 then QNameSet.compare s1 s2 else c)) trs in let _ = _flush_str_fmt () in let strs_strings, max_pre, max_all = List.fold_left (fun (accl, accp, acca) (q, s, f) -> let s1 = State.print _str_fmt q; _flush_str_fmt () in let s2 = QNameSet.print _str_fmt s; _flush_str_fmt () in let s3 = SFormula.print _str_fmt f; _flush_str_fmt () in let pre = Pretty.length s1 + Pretty.length s2 in let all = Pretty.length s3 in ( (q, s1, s2, s3) :: accl, max accp pre, max acca all) ) ([], 0, 0) sorted_trs in let line = Pretty.line (max_all + max_pre + 6) in let prev_q = ref State.dummy in List.iter (fun (q, s1, s2, s3) -> if !prev_q != q && !prev_q != State.dummy then fprintf fmt " %s\n%!" line; prev_q := q; fprintf fmt " %s, %s" s1 s2; fprintf fmt "%s" (Pretty.padding (max_pre - Pretty.length s1 - Pretty.length s2)); fprintf fmt " %s %s@\n%!" Pretty.right_arrow s3; ) strs_strings; fprintf fmt " %s\n%!" line (* [complete transitions a] ensures that for each state q and each symbols s in the alphabet, a transition q, s exists. (adding q, s -> F when necessary). *) let complete_transitions a = StateSet.iter (fun q -> let qtrans = Hashtbl.find a.transitions q in let rem = List.fold_left (fun rem (labels, _) -> QNameSet.diff rem labels) QNameSet.any qtrans in let nqtrans = if QNameSet.is_empty rem then qtrans else (rem, SFormula.false_) :: qtrans in Hashtbl.replace a.transitions q nqtrans ) a.states let cleanup_states a = let memo = ref StateSet.empty in let rec loop q = if not (StateSet.mem q !memo) then begin memo := StateSet.add q !memo; let trs = try Hashtbl.find a.transitions q with Not_found -> [] in List.iter (fun (_, phi) -> StateSet.iter loop (SFormula.get_states phi)) trs end in StateSet.iter loop a.selection_states; let unused = StateSet.diff a.states !memo in eprintf "Unused states %a\n%!" StateSet.print unused; StateSet.iter (fun q -> Hashtbl.remove a.transitions q) unused; a.states <- !memo (* [normalize_negations a] removes negative atoms in the formula complementing the sub-automaton in the negative states. [TODO check the meaning of negative upward arrows] *) let normalize_negations auto = eprintf "Automaton before normalize_trans:\n"; print err_formatter auto; eprintf "--------------------\n%!"; let memo_state = Hashtbl.create 17 in let todo = Queue.create () in let rec flip b f = match SFormula.expr f with Formula.True | Formula.False -> if b then f else SFormula.not_ f | Formula.Or(f1, f2) -> (if b then SFormula.or_ else SFormula.and_)(flip b f1) (flip b f2) | Formula.And(f1, f2) -> (if b then SFormula.and_ else SFormula.or_)(flip b f1) (flip b f2) | Formula.Atom(a) -> begin let l, b', q = Atom.node a in if q == State.dummy then if b then f else SFormula.not_ f else if b == b' then begin (* a appears positively, either no negation or double negation *) if not (Hashtbl.mem memo_state (q,b)) then Queue.add (q,true) todo; SFormula.atom_ (Atom.make (l, true, q)) end else begin (* need to reverse the atom either we have a positive state deep below a negation or we have a negative state in a positive formula b' = sign of the state b = sign of the enclosing formula *) let not_q = try (* does the inverted state of q exist ? *) Hashtbl.find memo_state (q, false) with Not_found -> (* create a new state and add it to the todo queue *) let nq = State.make () in auto.states <- StateSet.add nq auto.states; Hashtbl.add memo_state (q, false) nq; Queue.add (q, false) todo; nq in SFormula.atom_ (Atom.make (l, true, not_q)) end end in (* states that are not reachable from a selection stat are not interesting *) StateSet.iter (fun q -> Queue.add (q, true) todo) auto.selection_states; while not (Queue.is_empty todo) do let (q, b) as key = Queue.pop todo in let q' = try Hashtbl.find memo_state key with Not_found -> let nq = if b then q else let nq = State.make () in auto.states <- StateSet.add nq auto.states; nq in Hashtbl.add memo_state key nq; nq in let trans = Hashtbl.find auto.transitions q in let trans' = List.map (fun (lab, f) -> lab, flip b f) trans in Hashtbl.replace auto.transitions q' trans'; done; cleanup_states auto