(***********************************************************************) (* *) (* TAToo *) (* *) (* Kim Nguyen, LRI UMR8623 *) (* Université Paris-Sud & CNRS *) (* *) (* Copyright 2010-2013 Université Paris-Sud and Centre National de la *) (* Recherche Scientifique. All rights reserved. This file is *) (* distributed under the terms of the GNU Lesser General Public *) (* License, with the special exception on linking described in file *) (* ../LICENSE. *) (* *) (***********************************************************************) (* Time-stamp: *) INCLUDE "utils.ml" open Format open Utils type move = [ `Left | `Right | `Up1 | `Up2 | `Epsilon |`Is1 |`Is2 ] type state_ctx = { mutable left : StateSet.t; mutable right : StateSet.t; mutable up1 : StateSet.t; mutable up2 : StateSet.t; mutable epsilon : StateSet.t; mutable is_left : bool; mutable is_root : bool} type pred_ = move * bool * State.t let make_ctx a b c d e f g = { left = a; right = b; up1 = c; up2 = d; epsilon = e; is_left = f; is_root = g } let print_ctx fmt c = fprintf fmt "{ left : %a; right : %a; up1: %a ; up2 : %a; epsilon : %a ; is_left : %b; is_root : %b }" StateSet.print c.left StateSet.print c.right StateSet.print c.up1 StateSet.print c.up2 StateSet.print c.epsilon c.is_left c.is_root module Move : (Formula.PREDICATE with type data = pred_ and type ctx = state_ctx ) = struct module Node = struct type t = move * bool * State.t let equal n1 n2 = n1 = n2 let hash n = Hashtbl.hash n end type ctx = state_ctx include Hcons.Make(Node) let _pr_buff = Buffer.create 10 let _str_fmt = formatter_of_buffer _pr_buff let _flush_str_fmt () = pp_print_flush _str_fmt (); let s = Buffer.contents _pr_buff in Buffer.clear _pr_buff; s let print ppf a = let _ = _flush_str_fmt () in let m, b, s = a.node in let dir,num = match m with | `Left -> Pretty.down_arrow, Pretty.subscript 1 | `Right -> Pretty.down_arrow, Pretty.subscript 2 | `Epsilon -> Pretty.epsilon, "" | `Up1 -> Pretty.up_arrow, Pretty.subscript 1 | `Up2 -> Pretty.up_arrow, Pretty.subscript 2 | `Is1 -> "?", Pretty.subscript 1 | `Is2 -> "?", Pretty.subscript 2 in fprintf _str_fmt "%s%s" dir num; if s != State.dummy then State.print _str_fmt s; let str = _flush_str_fmt () in fprintf ppf "%s%s" (if b then "" else Pretty.lnot) str let neg p = let l, b, s = p.node in make (l, not b, s) exception NegativeAtom of (move*State.t) let eval ctx p = let l, b, s = p.node in if s == State.dummy then let dir = match l with | `Is1 -> ctx.is_left | _ -> not ctx.is_left in let res = dir && not ctx.is_root in res && b || (not (b || res)) else begin if not b then raise (NegativeAtom(l,s)); StateSet.mem s begin match l with `Left -> ctx.left | `Right -> ctx.right | `Up1 -> ctx.up1 | `Up2 -> ctx.up2 | `Epsilon -> ctx.epsilon | _ -> StateSet.empty end end end module SFormula = Formula.Make(Move) type t = { id : Uid.t; mutable states : StateSet.t; mutable top_states : StateSet.t; mutable bottom_states: StateSet.t; mutable selection_states: StateSet.t; transitions: (State.t, (QNameSet.t*SFormula.t) list) Hashtbl.t; } let next = Uid.make_maker () let create () = { id = next (); states = StateSet.empty; top_states = StateSet.empty; bottom_states = StateSet.empty; selection_states = StateSet.empty; transitions = Hashtbl.create 17; } let get_trans a states tag = StateSet.fold (fun q acc0 -> try let trs = Hashtbl.find a.transitions q in List.fold_left (fun acc1 (labs, phi) -> if QNameSet.mem tag labs then (q,phi)::acc1 else acc1) acc0 trs with Not_found -> acc0 ) states [] (* [add_trans a q labels f] adds a transition [(q,labels) -> f] to the automaton [a] but ensures that transitions remains pairwise disjoint *) let add_trans a q s f = let trs = try Hashtbl.find a.transitions q with Not_found -> [] in let cup, ntrs = List.fold_left (fun (acup, atrs) (labs, phi) -> let lab1 = QNameSet.inter labs s in let lab2 = QNameSet.diff labs s in let tr1 = if QNameSet.is_empty lab1 then [] else [ (lab1, SFormula.or_ phi f) ] in let tr2 = if QNameSet.is_empty lab2 then [] else [ (lab2, SFormula.or_ phi f) ] in (QNameSet.union acup labs, tr1@ tr2 @ atrs) ) (QNameSet.empty, []) trs in let rem = QNameSet.diff s cup in let ntrs = if QNameSet.is_empty rem then ntrs else (rem, f) :: ntrs in Hashtbl.replace a.transitions q ntrs let _pr_buff = Buffer.create 50 let _str_fmt = formatter_of_buffer _pr_buff let _flush_str_fmt () = pp_print_flush _str_fmt (); let s = Buffer.contents _pr_buff in Buffer.clear _pr_buff; s let print fmt a = fprintf fmt "\nInternal UID: %i@\n\ States: %a@\n\ Top states: %a@\n\ Bottom states: %a@\n\ Selection states: %a@\n\ Alternating transitions:@\n" (a.id :> int) StateSet.print a.states StateSet.print a.top_states StateSet.print a.bottom_states StateSet.print a.selection_states; let trs = Hashtbl.fold (fun q t acc -> List.fold_left (fun acc (s , f) -> (q,s,f)::acc) acc t) a.transitions [] in let sorted_trs = List.stable_sort (fun (q1, s1, _) (q2, s2, _) -> let c = State.compare q1 q2 in - (if c == 0 then QNameSet.compare s1 s2 else c)) trs in let _ = _flush_str_fmt () in let strs_strings, max_pre, max_all = List.fold_left (fun (accl, accp, acca) (q, s, f) -> let s1 = State.print _str_fmt q; _flush_str_fmt () in let s2 = QNameSet.print _str_fmt s; _flush_str_fmt () in let s3 = SFormula.print _str_fmt f; _flush_str_fmt () in let pre = Pretty.length s1 + Pretty.length s2 in let all = Pretty.length s3 in ( (q, s1, s2, s3) :: accl, max accp pre, max acca all) ) ([], 0, 0) sorted_trs in let line = Pretty.line (max_all + max_pre + 6) in let prev_q = ref State.dummy in List.iter (fun (q, s1, s2, s3) -> if !prev_q != q && !prev_q != State.dummy then fprintf fmt " %s\n%!" line; prev_q := q; fprintf fmt " %s, %s" s1 s2; fprintf fmt "%s" (Pretty.padding (max_pre - Pretty.length s1 - Pretty.length s2)); fprintf fmt " %s %s@\n%!" Pretty.right_arrow s3; ) strs_strings; fprintf fmt " %s\n%!" line (* [complete transitions a] ensures that for each state q and each symbols s in the alphabet, a transition q, s exists. (adding q, s -> F when necessary). *) let complete_transitions a = StateSet.iter (fun q -> let qtrans = Hashtbl.find a.transitions q in let rem = List.fold_left (fun rem (labels, _) -> QNameSet.diff rem labels) QNameSet.any qtrans in let nqtrans = if QNameSet.is_empty rem then qtrans else (rem, SFormula.false_) :: qtrans in Hashtbl.replace a.transitions q nqtrans ) a.states (* [normalize_negations a] removes negative atoms in the formula complementing the sub-automaton in the negative states. [TODO check the meaning of negative upward arrows] *) let normalize_negations auto = let memo_state = Hashtbl.create 17 in let todo = Queue.create () in let rec flip b f = match SFormula.expr f with Formula.True | Formula.False -> if b then f else SFormula.not_ f | Formula.Or(f1, f2) -> (if b then SFormula.or_ else SFormula.and_)(flip b f1) (flip b f2) | Formula.And(f1, f2) -> (if b then SFormula.and_ else SFormula.or_)(flip b f1) (flip b f2) | Formula.Atom(a) -> begin let l, b', q = Move.node a in if q == State.dummy then if b then f else SFormula.not_ f else if b == b' then begin (* a appears positively, either no negation or double negation *) if not (Hashtbl.mem memo_state (q,b)) then Queue.add (q,true) todo; SFormula.atom_ (Move.make (l, true, q)) end else begin (* need to reverse the atom either we have a positive state deep below a negation or we have a negative state in a positive formula b' = sign of the state b = sign of the enclosing formula *) let not_q = try (* does the inverted state of q exist ? *) Hashtbl.find memo_state (q, false) with Not_found -> (* create a new state and add it to the todo queue *) let nq = State.make () in auto.states <- StateSet.add nq auto.states; if not (StateSet.mem q auto.bottom_states) then auto.bottom_states <- StateSet.add nq auto.bottom_states; if not (StateSet.mem q auto.top_states) then auto.top_states <- StateSet.add nq auto.top_states; Hashtbl.add memo_state (q, false) nq; Queue.add (q, false) todo; nq in SFormula.atom_ (Move.make (l, true, not_q)) end end in (* states that are not reachable from a selection stat are not interesting *) StateSet.iter (fun q -> Queue.add (q, true) todo) auto.selection_states; while not (Queue.is_empty todo) do let (q, b) as key = Queue.pop todo in let q' = try Hashtbl.find memo_state key with Not_found -> let nq = if b then q else let nq = State.make () in auto.states <- StateSet.add nq auto.states; if not (StateSet.mem q auto.bottom_states) then auto.bottom_states <- StateSet.add nq auto.bottom_states; if not (StateSet.mem q auto.top_states) then auto.top_states <- StateSet.add nq auto.top_states; nq in Hashtbl.add memo_state key nq; nq in let trans = Hashtbl.find auto.transitions q in let trans' = List.map (fun (lab, f) -> lab, flip b f) trans in Hashtbl.replace auto.transitions q' trans' done