(***********************************************************************) (* *) (* TAToo *) (* *) (* Lucca Hirschi, ? *) (* ? *) (* *) (* Copyright 2010-2012 Université Paris-Sud and Centre National de la *) (* Recherche Scientifique. All rights reserved. This file is *) (* distributed under the terms of the GNU Lesser General Public *) (* License, with the special exception on linking described in file *) (* ../LICENSE. *) (* *) (***********************************************************************) open XPath.Ast open Formula.Infix exception Not_core_XPath (** Raised whenever the XPath query contains not implemented structures *) let pr_er = Format.err_formatter let trans query = (* Buidling of the ASTA step by step with a special case for the last step. Then add a top most state. Each function modifies asta. *) let asta = Asta.empty in (* builds asta from the bottom of the query *) let rec trans = function | [s] -> trans_last s | s :: tl -> trans tl; trans_step s | [] -> () (* Add THE top most state for top-level query (done in the end) *) and trans_init () = let top_st = Asta.new_state () in let or_top = List.fold_left (fun acc x -> ((`Left *+ x) +| acc)) (Formula.false_) (Asta.top_states asta) in Asta.add_quer asta top_st; Asta.init_top asta; Asta.add_top asta top_st; Asta.add_bot asta top_st; (* for trees which are leaves *) Asta.add_tr asta (top_st, Asta.any_label, or_top) true (* A selecting state is needed *) and trans_last (ax,test,pred) = let fo_p = trans_pr pred in let q,q' = Asta.new_state(), Asta.new_state() in Asta.add_selec asta q'; Asta.add_quer asta q; Asta.add_quer asta q'; Asta.add_top asta q; Asta.add_top asta q'; Asta.add_bot asta q; (* q' \notin B !! *) let Simple lab = test in let tr_selec = (q', lab, fo_p) and tr_q = (q, Asta.any_label, form_propa_selec q q' ax) in Asta.add_tr asta tr_selec true; Asta.add_tr asta tr_q true (* Add a new state and its transitions for the step *) and trans_step (ax,test,pred) = let fo_p = trans_pr pred and q = Asta.new_state() in let Simple label = test and form_next = (fo_p) *& (* (\/ top_next) /\ predicat *) (List.fold_left (fun acc x -> (`Left *+ x ) +| acc) Formula.false_ (Asta.top_states asta)) in let tr_next = (q, label, form_next) and tr_propa = (q, Asta.any_label, form_propa q ax) in Asta.add_quer asta q; Asta.add_top asta q; Asta.add_bot asta q; Asta.add_tr asta tr_next true; Asta.add_tr asta tr_propa true; Asta.init_top asta; Asta.add_top asta q (* Translating of predicates. Either we apply De Morgan rules in xPath.parse or here *) and trans_pr = function | Expr True -> Formula.true_ | Expr False -> Formula.false_ | Or (p_1,p_2) -> trans_pr(p_1) +| trans_pr(p_2) | And (p_1,p_2) -> trans_pr(p_1) *& trans_pr(p_2) | Not (Expr Path q) -> (trans_pr_path false q) | Expr Path q -> (trans_pr_path true q) | x -> print_predicate pr_er x; raise Not_core_XPath (* Builds asta for predicate and gives the formula which must be satsified *) and trans_pr_path posi = function | Relative [] -> if posi then Formula.true_ else Formula.false_ | Relative steps -> List.fold_left (fun acc x -> if posi then (`Left *+ x) +| acc else (`Left *- x) +| acc) Formula.false_ (trans_pr_step_l steps) | AbsoluteDoS steps as x -> print pr_er x; raise Not_core_XPath | Absolute steps as x -> print pr_er x; raise Not_core_XPath (* Builds asta for a predicate query and give the formula *) and trans_pr_step_l = function | [step] -> trans_pr_step [] step | step :: tl -> let list_top = trans_pr_step_l tl in trans_pr_step list_top step | [] -> failwith "Can not happened! 1" (* Add a step on the top of a list of states in a predicate *) and trans_pr_step list (ax,test,pred) = let form_next = if list = [] then trans_pr pred else (trans_pr pred) *& (List.fold_left (fun acc x -> (`Left *+ x) +| acc) Formula.false_ list) and q = Asta.new_state() and Simple label = test in let tr_next = (q,label, form_next) and tr_propa = (q, Asta.any_label, form_propa q ax) in Asta.add_reco asta q; Asta.add_tr asta tr_next false; Asta.add_tr asta tr_propa false; [q] (* always one element here, but more with self axis *) (* Gives the propagation formula *) and form_propa q = function | Child -> `Right *+ q | Descendant -> (`Left *+ q +| `Right *+ q) | x -> print_axis pr_er x; raise Not_core_XPath (* The same with a selecting state *) and form_propa_selec q q' = function | Child -> `Right *+ q +| `Right *+ q' | Descendant -> (`Left *+ q +| `Right *+ q) +| (`Left *+ q' +| `Right *+ q') | x -> print_axis pr_er x; raise Not_core_XPath in (* Match the top-level query *) match query with | Absolute steps -> trans steps; trans_init(); asta | AbsoluteDoS steps as x -> print pr_er x; raise Not_core_XPath | Relative steps as x -> print pr_er x; raise Not_core_XPath