(***********************************************************************) (* *) (* TAToo *) (* *) (* Kim Nguyen, LRI UMR8623 *) (* Université Paris-Sud & CNRS *) (* *) (* Copyright 2010-2013 Université Paris-Sud and Centre National de la *) (* Recherche Scientifique. All rights reserved. This file is *) (* distributed under the terms of the GNU Lesser General Public *) (* License, with the special exception on linking described in file *) (* ../LICENSE. *) (* *) (***********************************************************************) INCLUDE "utils.ml" open Format (* (** Implementation of hashconsed Boolean formulae *) *) module type ATOM = sig type t val neg : t -> t include Hcons.Abstract with type t := t include Common_sig.Printable with type t := t end type ('formula,'atom) expr = | False | True | Or of 'formula * 'formula | And of 'formula * 'formula | Atom of 'atom module Make (P: ATOM) = struct type 'hcons node = { pos : ('hcons,P.t) expr; mutable neg : 'hcons; } external hash_const_variant : [> ] -> int = "%identity" external vb : bool -> int = "%identity" module rec Node : Hcons.S with type data = Data.t = Hcons.Make (Data) and Data : Common_sig.HashedType with type t = Node.t node = struct type t = Node.t node let equal x y = match x.pos, y.pos with | a,b when a == b -> true | Or(xf1, xf2), Or(yf1, yf2) | And(xf1, xf2), And(yf1,yf2) -> xf1 == yf1 && xf2 == yf2 | Atom(p1), Atom(p2) -> p1 == p2 | _ -> false let hash f = match f.pos with | False -> 0 | True -> 1 | Or (f1, f2) -> HASHINT3 (PRIME1, Uid.to_int f1.Node.id, Uid.to_int f2.Node.id) | And (f1, f2) -> HASHINT3(PRIME3, Uid.to_int f1.Node.id, Uid.to_int f2.Node.id) | Atom(p) -> HASHINT2(PRIME5, Uid.to_int (P.uid p)) end type t = Node.t let hash x = x.Node.hash let uid x = x.Node.id let equal = Node.equal let expr f = f.Node.node.pos let compare f1 f2 = compare f1.Node.id f2.Node.id let prio f = match expr f with | True | False -> 10 | Atom _ -> 8 | And _ -> 6 | Or _ -> 1 let rec print ?(parent=false) ppf f = if parent then fprintf ppf "("; let _ = match expr f with | True -> fprintf ppf "%s" Pretty.top | False -> fprintf ppf "%s" Pretty.bottom | And(f1,f2) -> print ~parent:(prio f > prio f1) ppf f1; fprintf ppf " %s " Pretty.wedge; print ~parent:(prio f > prio f2) ppf f2; | Or(f1,f2) -> (print ppf f1); fprintf ppf " %s " Pretty.vee; (print ppf f2); | Atom(p) -> fprintf ppf "%a" P.print p (* let _ = flush_str_formatter() in let fmt = str_formatter in let a_str, d_str = match dir with | `Left -> Pretty.down_arrow, Pretty.subscript 1 | `Right -> Pretty.down_arrow, Pretty.subscript 2 | `Epsilon -> Pretty.epsilon, "" | `Up1 -> Pretty.up_arrow, Pretty.subscript 1 | `Up2 -> Pretty.up_arrow, Pretty.subscript 2 in fprintf fmt "%s%s" a_str d_str; State.print fmt s; let str = flush_str_formatter() in if b then fprintf ppf "%s" str else Pretty.pp_overline ppf str *) in if parent then fprintf ppf ")" let print ppf f = print ~parent:false ppf f let is_true f = (expr f) == True let is_false f = (expr f) == False let cons pos neg = let nnode = Node.make { pos = neg; neg = Obj.magic 0 } in let pnode = Node.make { pos = pos; neg = nnode } in (Node.node nnode).neg <- pnode; (* works because the neg field isn't taken into account for hashing ! *) pnode,nnode let true_,false_ = cons True False let atom_ p = fst (cons (Atom(p)) (Atom(P.neg p))) let not_ f = f.Node.node.neg let order f1 f2 = if uid f1 < uid f2 then f2,f1 else f1,f2 let or_ f1 f2 = (* Tautologies: x|x, x|not(x) *) if equal f1 f2 then f1 else if equal f1 (not_ f2) then true_ (* simplification *) else if is_true f1 || is_true f2 then true_ else if is_false f1 && is_false f2 then false_ else if is_false f1 then f2 else if is_false f2 then f1 (* commutativity of | *) else let f1, f2 = order f1 f2 in fst (cons (Or(f1,f2)) (And(not_ f1, not_ f2))) let and_ f1 f2 = not_ (or_ (not_ f1) (not_ f2)) let of_bool = function true -> true_ | false -> false_ let fold f phi acc = let rec loop phi acc = match expr phi with | And (phi1, phi2) | Or(phi1, phi2) -> loop phi2 (loop phi1 (f phi acc)) | _ -> f phi acc in loop phi acc end