X-Git-Url: http://git.nguyen.vg/gitweb/?p=tatoo.git;a=blobdiff_plain;f=src%2Fata.ml;h=3fa2698b9e7b60a56b98390ac6dea502474da507;hp=d6aeaec3cb6a505ab0138a91cf2f78e009817c52;hb=90ce5857f6cad2ebc753fdbc8e37882a1ff47415;hpb=317ee66c18ebb68fdcb5ef57e88b9c61951b6ffb diff --git a/src/ata.ml b/src/ata.ml index d6aeaec..3fa2698 100644 --- a/src/ata.ml +++ b/src/ata.ml @@ -13,38 +13,29 @@ (* *) (***********************************************************************) -(* - Time-stamp: -*) - INCLUDE "utils.ml" open Format +type move = [ `First_child + | `Next_sibling + | `Parent + | `Previous_sibling + | `Stay ] -type predicate = | First_child - | Next_sibling - | Parent - | Previous_sibling - | Stay +type predicate = Move of move * State.t | Is_first_child | Is_next_sibling - | Is of (Tree.NodeKind.t) + | Is of Tree.NodeKind.t | Has_first_child | Has_next_sibling -let is_move p = match p with -| First_child | Next_sibling -| Parent | Previous_sibling | Stay -> true -| _ -> false - - -type atom = predicate * bool * State.t +let is_move = function Move _ -> true | _ -> false -module Atom : (Formula.ATOM with type data = atom) = +module Atom : (Boolean.ATOM with type data = predicate) = struct module Node = struct - type t = atom + type t = predicate let equal n1 n2 = n1 = n2 let hash n = Hashtbl.hash n end @@ -52,85 +43,74 @@ struct include Hcons.Make(Node) let print ppf a = - let p, b, q = a.node in - if not b then fprintf ppf "%s" Pretty.lnot; - match p with - | First_child -> fprintf ppf "FC(%a)" State.print q - | Next_sibling -> fprintf ppf "NS(%a)" State.print q - | Parent -> fprintf ppf "FC%s(%a)" Pretty.inverse State.print q - | Previous_sibling -> fprintf ppf "NS%s(%a)" Pretty.inverse State.print q - | Stay -> fprintf ppf "%s(%a)" Pretty.epsilon State.print q - | Is_first_child -> fprintf ppf "FC%s?" Pretty.inverse - | Is_next_sibling -> fprintf ppf "NS%s?" Pretty.inverse + match a.node with + | Move (m, q) -> begin + match m with + `First_child -> fprintf ppf "%s" Pretty.down_arrow + | `Next_sibling -> fprintf ppf "%s" Pretty.right_arrow + | `Parent -> fprintf ppf "%s" Pretty.up_arrow + | `Previous_sibling -> fprintf ppf "%s" Pretty.left_arrow + | `Stay -> fprintf ppf "%s" Pretty.bullet + end; + fprintf ppf "%a" State.print q + | Is_first_child -> fprintf ppf "%s?" Pretty.up_arrow + | Is_next_sibling -> fprintf ppf "%s?" Pretty.left_arrow | Is k -> fprintf ppf "is-%a?" Tree.NodeKind.print k - | Has_first_child -> fprintf ppf "FC?" - | Has_next_sibling -> fprintf ppf "NS?" - - let neg a = - let p, b, q = a.node in - make (p, not b, q) - + | Has_first_child -> fprintf ppf "%s?" Pretty.down_arrow + | Has_next_sibling -> fprintf ppf "%s?" Pretty.right_arrow end -module SFormula = +module Formula = struct - include Formula.Make(Atom) + include Boolean.Make(Atom) open Tree.NodeKind - let mk_atom a b c = atom_ (Atom.make (a,b,c)) - let mk_kind k = mk_atom (Is k) true State.dummy - let has_first_child = - (mk_atom Has_first_child true State.dummy) + let mk_atom a = atom_ (Atom.make a) + let mk_kind k = mk_atom (Is k) + + let has_first_child = mk_atom Has_first_child - let has_next_sibling = - (mk_atom Has_next_sibling true State.dummy) + let has_next_sibling = mk_atom Has_next_sibling - let is_first_child = - (mk_atom Is_first_child true State.dummy) + let is_first_child = mk_atom Is_first_child - let is_next_sibling = - (mk_atom Is_next_sibling true State.dummy) + let is_next_sibling = mk_atom Is_next_sibling - let is_attribute = - (mk_atom (Is Attribute) true State.dummy) + let is_attribute = mk_atom (Is Attribute) - let is_element = - (mk_atom (Is Element) true State.dummy) + let is_element = mk_atom (Is Element) - let is_processing_instruction = - (mk_atom (Is ProcessingInstruction) true State.dummy) + let is_processing_instruction = mk_atom (Is ProcessingInstruction) - let is_comment = - (mk_atom (Is Comment) true State.dummy) + let is_comment = mk_atom (Is Comment) + let mk_move m q = mk_atom (Move(m,q)) let first_child q = - and_ - (mk_atom First_child true q) - has_first_child + and_ + (mk_move `First_child q) + has_first_child let next_sibling q = and_ - (mk_atom Next_sibling true q) + (mk_move `Next_sibling q) has_next_sibling let parent q = and_ - (mk_atom Parent true q) + (mk_move `Parent q) is_first_child let previous_sibling q = and_ - (mk_atom Previous_sibling true q) + (mk_move `Previous_sibling q) is_next_sibling - let stay q = - (mk_atom Stay true q) + let stay q = mk_move `Stay q let get_states phi = fold (fun phi acc -> match expr phi with - | Formula.Atom a -> let _, _, q = Atom.node a in - if q != State.dummy then StateSet.add q acc else acc + | Boolean.Atom ({ Atom.node = Move(_,q) ; _ }, _) -> StateSet.add q acc | _ -> acc ) phi StateSet.empty @@ -138,11 +118,11 @@ end module Transition = Hcons.Make (struct - type t = State.t * QNameSet.t * SFormula.t + type t = State.t * QNameSet.t * Formula.t let equal (a, b, c) (d, e, f) = a == d && b == e && c == f let hash (a, b, c) = - HASHINT4 (PRIME1, a, ((QNameSet.uid b) :> int), ((SFormula.uid c) :> int)) + HASHINT4 (PRIME1, a, ((QNameSet.uid b) :> int), ((Formula.uid c) :> int)) end) @@ -155,7 +135,7 @@ end = let print ppf ?(sep="\n") l = iter (fun t -> let q, lab, f = Transition.node t in - fprintf ppf "%a, %a -> %a%s" State.print q QNameSet.print lab SFormula.print f sep) l + fprintf ppf "%a, %a -> %a%s" State.print q QNameSet.print lab Formula.print f sep) l end @@ -222,7 +202,7 @@ type t = { id : Uid.t; mutable states : StateSet.t; mutable selection_states: StateSet.t; - transitions: (State.t, (QNameSet.t*SFormula.t) list) Hashtbl.t; + transitions: (State.t, (QNameSet.t*Formula.t) list) Hashtbl.t; mutable cache2 : TransList.t Cache.N2.t; mutable cache4 : Config.t Cache.N4.t; } @@ -230,16 +210,17 @@ type t = { let next = Uid.make_maker () let dummy2 = TransList.cons - (Transition.make (State.dummy,QNameSet.empty, SFormula.false_)) + (Transition.make (State.dummy,QNameSet.empty, Formula.false_)) TransList.nil -let dummy_config = Config.make { sat = StateSet.empty; - unsat = StateSet.empty; - todo = TransList.nil; - summary = dummy_summary - } +let dummy_config = + Config.make { sat = StateSet.empty; + unsat = StateSet.empty; + todo = TransList.nil; + summary = dummy_summary + } let create s ss = @@ -256,20 +237,27 @@ let create s ss = let n2 = ref 0 in Cache.N2.iteri (fun _ _ _ b -> if b then incr n2) auto.cache2; Cache.N4.iteri (fun _ _ _ _ _ b -> if b then incr n4) auto.cache4; - Format.eprintf "INFO: automaton %i, cache2: %i entries, cache6: %i entries\n%!" + Logger.msg `STATS "automaton %i, cache2: %i entries, cache6: %i entries" (auto.id :> int) !n2 !n4; let c2l, c2u = Cache.N2.stats auto.cache2 in let c4l, c4u = Cache.N4.stats auto.cache4 in - Format.eprintf "INFO: cache2: length: %i, used: %i, occupation: %f\n%!" c2l c2u (float c2u /. float c2l); - Format.eprintf "INFO: cache4: length: %i, used: %i, occupation: %f\n%!" c4l c4u (float c4u /. float c4l) + Logger.msg `STATS + "cache2: length: %i, used: %i, occupation: %f" + c2l c2u (float c2u /. float c2l); + Logger.msg `STATS + "cache4: length: %i, used: %i, occupation: %f" + c4l c4u (float c4u /. float c4l) ); auto let reset a = - a.cache2 <- Cache.N2.create (Cache.N2.dummy a.cache2); a.cache4 <- Cache.N4.create (Cache.N4.dummy a.cache4) +let full_reset a = + reset a; + a.cache2 <- Cache.N2.create (Cache.N2.dummy a.cache2) + let get_trans_aux a tag states = StateSet.fold (fun q acc0 -> @@ -294,109 +282,35 @@ let get_trans a tag states = (states.StateSet.id :> int) trs; trs) else trs - -(* -let eval_form phi fcs nss ps ss is_left is_right has_left has_right kind = - let rec loop phi = - begin match SFormula.expr phi with - Formula.True | Formula.False -> phi - | Formula.Atom a -> - let p, b, q = Atom.node a in begin - match p with - | First_child -> - if b == StateSet.mem q fcs then SFormula.true_ else phi - | Next_sibling -> - if b == StateSet.mem q nss then SFormula.true_ else phi - | Parent | Previous_sibling -> - if b == StateSet.mem q ps then SFormula.true_ else phi - | Stay -> - if b == StateSet.mem q ss then SFormula.true_ else phi - | Is_first_child -> SFormula.of_bool (b == is_left) - | Is_next_sibling -> SFormula.of_bool (b == is_right) - | Is k -> SFormula.of_bool (b == (k == kind)) - | Has_first_child -> SFormula.of_bool (b == has_left) - | Has_next_sibling -> SFormula.of_bool (b == has_right) - end - | Formula.And(phi1, phi2) -> SFormula.and_ (loop phi1) (loop phi2) - | Formula.Or (phi1, phi2) -> SFormula.or_ (loop phi1) (loop phi2) - end - in - loop phi - -let int_of_conf is_left is_right has_left has_right kind = - ((Obj.magic kind) lsl 4) lor - ((Obj.magic is_left) lsl 3) lor - ((Obj.magic is_right) lsl 2) lor - ((Obj.magic has_left) lsl 1) lor - (Obj.magic has_right) - -let eval_trans auto ltrs fcs nss ps ss is_left is_right has_left has_right kind = - let n = int_of_conf is_left is_right has_left has_right kind - and k = (fcs.StateSet.id :> int) - and l = (nss.StateSet.id :> int) - and m = (ps.StateSet.id :> int) in - let rec loop ltrs ss = - let i = (ltrs.TransList.id :> int) - and j = (ss.StateSet.id :> int) in - let (new_ltrs, new_ss) as res = - let res = Cache.N6.find auto.cache6 i j k l m n in - if res == dummy6 then - let res = - TransList.fold (fun trs (acct, accs) -> - let q, lab, phi = Transition.node trs in - if StateSet.mem q accs then (acct, accs) else - let new_phi = - eval_form - phi fcs nss ps accs - is_left is_right has_left has_right kind - in - if SFormula.is_true new_phi then - (acct, StateSet.add q accs) - else if SFormula.is_false new_phi then - (acct, accs) - else - let new_tr = Transition.make (q, lab, new_phi) in - (TransList.cons new_tr acct, accs) - ) ltrs (TransList.nil, ss) - in - Cache.N6.add auto.cache6 i j k l m n res; res - else - res - in - if new_ss == ss then res else - loop new_ltrs new_ss - in - loop ltrs ss - -*) - let simplify_atom atom pos q { Config.node=config; _ } = if (pos && StateSet.mem q config.sat) - || ((not pos) && StateSet.mem q config.unsat) then SFormula.true_ + || ((not pos) && StateSet.mem q config.unsat) then Formula.true_ else if (pos && StateSet.mem q config.unsat) - || ((not pos) && StateSet.mem q config.sat) then SFormula.false_ + || ((not pos) && StateSet.mem q config.sat) then Formula.false_ else atom - let eval_form phi fcs nss ps ss summary = let rec loop phi = - begin match SFormula.expr phi with - Formula.True | Formula.False -> phi - | Formula.Atom a -> - let p, b, q = Atom.node a in begin - match p with - | First_child -> simplify_atom phi b q fcs - | Next_sibling -> simplify_atom phi b q nss - | Parent | Previous_sibling -> simplify_atom phi b q ps - | Stay -> simplify_atom phi b q ss - | Is_first_child -> SFormula.of_bool (b == (is_left summary)) - | Is_next_sibling -> SFormula.of_bool (b == (is_right summary)) - | Is k -> SFormula.of_bool (b == (k == (kind summary))) - | Has_first_child -> SFormula.of_bool (b == (has_left summary)) - | Has_next_sibling -> SFormula.of_bool (b == (has_right summary)) + begin match Formula.expr phi with + Boolean.True | Boolean.False -> phi + | Boolean.Atom (a, b) -> + begin + match a.Atom.node with + | Move (m, q) -> + let states = match m with + `First_child -> fcs + | `Next_sibling -> nss + | `Parent | `Previous_sibling -> ps + | `Stay -> ss + in simplify_atom phi b q states + | Is_first_child -> Formula.of_bool (b == (is_left summary)) + | Is_next_sibling -> Formula.of_bool (b == (is_right summary)) + | Is k -> Formula.of_bool (b == (k == (kind summary))) + | Has_first_child -> Formula.of_bool (b == (has_left summary)) + | Has_next_sibling -> Formula.of_bool (b == (has_right summary)) end - | Formula.And(phi1, phi2) -> SFormula.and_ (loop phi1) (loop phi2) - | Formula.Or (phi1, phi2) -> SFormula.or_ (loop phi1) (loop phi2) + | Boolean.And(phi1, phi2) -> Formula.and_ (loop phi1) (loop phi2) + | Boolean.Or (phi1, phi2) -> Formula.or_ (loop phi1) (loop phi2) end in loop phi @@ -427,9 +341,9 @@ let eval_trans auto fcs nss ps ss = let new_phi = eval_form phi fcs nss ps old_config old_summary in - if SFormula.is_true new_phi then + if Formula.is_true new_phi then StateSet.add q a_sat, a_unsat, StateSet.add q a_rem, a_kept, a_todo - else if SFormula.is_false new_phi then + else if Formula.is_false new_phi then a_sat, StateSet.add q a_unsat, StateSet.add q a_rem, a_kept, a_todo else let new_tr = Transition.make (q, lab, new_phi) in @@ -441,7 +355,7 @@ let eval_trans auto fcs nss ps ss = let unsat = StateSet.union unsat (StateSet.diff removed kept) in (* States that were found once to be satisfiable remain so *) let unsat = StateSet.diff unsat sat in - let new_config = Config.make { sat; unsat; todo ; summary = old_summary } in + let new_config = Config.make { old_config.Config.node with sat; unsat; todo; } in Cache.N4.add auto.cache4 oid fcsid nssid psid new_config; new_config in @@ -462,11 +376,11 @@ let add_trans a q s f = let lab2 = QNameSet.diff labs s in let tr1 = if QNameSet.is_empty lab1 then [] - else [ (lab1, SFormula.or_ phi f) ] + else [ (lab1, Formula.or_ phi f) ] in let tr2 = if QNameSet.is_empty lab2 then [] - else [ (lab2, SFormula.or_ phi f) ] + else [ (lab2, Formula.or_ phi f) ] in (QNameSet.union acup labs, tr1@ tr2 @ atrs) ) (QNameSet.empty, []) trs @@ -485,7 +399,7 @@ let _flush_str_fmt () = pp_print_flush _str_fmt (); let print fmt a = fprintf fmt - "\nInternal UID: %i@\n\ + "Internal UID: %i@\n\ States: %a@\n\ Selection states: %a@\n\ Alternating transitions:@\n" @@ -506,7 +420,7 @@ let print fmt a = let strs_strings, max_pre, max_all = List.fold_left (fun (accl, accp, acca) (q, s, f) -> let s1 = State.print _str_fmt q; _flush_str_fmt () in let s2 = QNameSet.print _str_fmt s; _flush_str_fmt () in - let s3 = SFormula.print _str_fmt f; _flush_str_fmt () in + let s3 = Formula.print _str_fmt f; _flush_str_fmt () in let pre = Pretty.length s1 + Pretty.length s2 in let all = Pretty.length s3 in ( (q, s1, s2, s3) :: accl, max accp pre, max acca all) @@ -514,14 +428,15 @@ let print fmt a = in let line = Pretty.line (max_all + max_pre + 6) in let prev_q = ref State.dummy in + fprintf fmt "%s@\n" line; List.iter (fun (q, s1, s2, s3) -> - if !prev_q != q && !prev_q != State.dummy then fprintf fmt " %s\n%!" line; + if !prev_q != q && !prev_q != State.dummy then fprintf fmt "%s@\n" line; prev_q := q; - fprintf fmt " %s, %s" s1 s2; + fprintf fmt "%s, %s" s1 s2; fprintf fmt "%s" (Pretty.padding (max_pre - Pretty.length s1 - Pretty.length s2)); - fprintf fmt " %s %s@\n%!" Pretty.right_arrow s3; + fprintf fmt " %s %s@\n" Pretty.right_arrow s3; ) strs_strings; - fprintf fmt " %s\n%!" line + fprintf fmt "%s@\n" line (* [complete transitions a] ensures that for each state q @@ -539,7 +454,7 @@ let complete_transitions a = let nqtrans = if QNameSet.is_empty rem then qtrans else - (rem, SFormula.false_) :: qtrans + (rem, Formula.false_) :: qtrans in Hashtbl.replace a.transitions q nqtrans ) a.states @@ -551,12 +466,11 @@ let cleanup_states a = memo := StateSet.add q !memo; let trs = try Hashtbl.find a.transitions q with Not_found -> [] in List.iter (fun (_, phi) -> - StateSet.iter loop (SFormula.get_states phi)) trs + StateSet.iter loop (Formula.get_states phi)) trs end in StateSet.iter loop a.selection_states; let unused = StateSet.diff a.states !memo in - eprintf "Unused states %a\n%!" StateSet.print unused; StateSet.iter (fun q -> Hashtbl.remove a.transitions q) unused; a.states <- !memo @@ -566,46 +480,42 @@ let cleanup_states a = *) let normalize_negations auto = - eprintf "Automaton before normalize_trans:\n"; - print err_formatter auto; - eprintf "--------------------\n%!"; - let memo_state = Hashtbl.create 17 in let todo = Queue.create () in let rec flip b f = - match SFormula.expr f with - Formula.True | Formula.False -> if b then f else SFormula.not_ f - | Formula.Or(f1, f2) -> (if b then SFormula.or_ else SFormula.and_)(flip b f1) (flip b f2) - | Formula.And(f1, f2) -> (if b then SFormula.and_ else SFormula.or_)(flip b f1) (flip b f2) - | Formula.Atom(a) -> begin - let l, b', q = Atom.node a in - if q == State.dummy then if b then f else SFormula.not_ f - else - if b == b' then begin - (* a appears positively, either no negation or double negation *) - if not (Hashtbl.mem memo_state (q,b)) then Queue.add (q,true) todo; - SFormula.atom_ (Atom.make (l, true, q)) - end else begin + match Formula.expr f with + Boolean.True | Boolean.False -> if b then f else Formula.not_ f + | Boolean.Or(f1, f2) -> (if b then Formula.or_ else Formula.and_)(flip b f1) (flip b f2) + | Boolean.And(f1, f2) -> (if b then Formula.and_ else Formula.or_)(flip b f1) (flip b f2) + | Boolean.Atom(a, b') -> begin + match a.Atom.node with + | Move (m, q) -> + if b == b' then begin + (* a appears positively, either no negation or double negation *) + if not (Hashtbl.mem memo_state (q,b)) then Queue.add (q,true) todo; + Formula.mk_atom (Move(m, q)) + end else begin (* need to reverse the atom either we have a positive state deep below a negation or we have a negative state in a positive formula b' = sign of the state b = sign of the enclosing formula *) - let not_q = - try + let not_q = + try (* does the inverted state of q exist ? *) - Hashtbl.find memo_state (q, false) - with - Not_found -> + Hashtbl.find memo_state (q, false) + with + Not_found -> (* create a new state and add it to the todo queue *) - let nq = State.make () in - auto.states <- StateSet.add nq auto.states; - Hashtbl.add memo_state (q, false) nq; - Queue.add (q, false) todo; nq - in - SFormula.atom_ (Atom.make (l, true, not_q)) - end + let nq = State.make () in + auto.states <- StateSet.add nq auto.states; + Hashtbl.add memo_state (q, false) nq; + Queue.add (q, false) todo; nq + in + Formula.mk_atom (Move (m,not_q)) + end + | _ -> if b then f else Formula.not_ f end in (* states that are not reachable from a selection stat are not interesting *) @@ -630,5 +540,3 @@ let normalize_negations auto = Hashtbl.replace auto.transitions q' trans'; done; cleanup_states auto - -