X-Git-Url: http://git.nguyen.vg/gitweb/?p=tatoo.git;a=blobdiff_plain;f=src%2Fata.ml;h=8a13705c5d5e056c4cec98123f0ab281b015ce80;hp=f4cd6db9cbd9b2b707f1bbaad73f9f1a7f8110de;hb=be682346caf089e95dc3254f89119f93797813f4;hpb=e3474bb976d161aa5c42f3d42583bbe290bbfcc4 diff --git a/src/ata.ml b/src/ata.ml index f4cd6db..8a13705 100644 --- a/src/ata.ml +++ b/src/ata.ml @@ -13,38 +13,90 @@ (* *) (***********************************************************************) -(* - Time-stamp: -*) - INCLUDE "utils.ml" open Format +open Misc +type move = [ `First_child + | `Next_sibling + | `Parent + | `Previous_sibling + | `Stay ] + +module Move = + struct + type t = move + type 'a table = 'a array + let idx = function + | `First_child -> 0 + | `Next_sibling -> 1 + | `Parent -> 2 + | `Previous_sibling -> 3 + | `Stay -> 4 + let ridx = function + | 0 -> `First_child + | 1 -> `Next_sibling + | 2 -> `Parent + | 3 -> `Previous_sibling + | 4 -> `Stay + | _ -> assert false + + let create_table a = Array.make 5 a + let get m k = m.(idx k) + let set m k v = m.(idx k) <- v + let iter f m = Array.iteri (fun i v -> f (ridx i) v) m + let fold f m acc = + let acc = ref acc in + iter (fun i v -> acc := f i v !acc) m; + !acc + let for_all p m = + try + iter (fun i v -> if not (p i v) then raise Exit) m; + true + with + Exit -> false + let for_all2 p m1 m2 = + try + for i = 0 to 4 do + let v1 = m1.(i) + and v2 = m2.(i) in + if not (p (ridx i) v1 v2) then raise Exit + done; + true + with + Exit -> false -type predicate = | First_child - | Next_sibling - | Parent - | Previous_sibling - | Stay + let exists p m = + try + iter (fun i v -> if p i v then raise Exit) m; + false + with + Exit -> true + let print ppf m = + match m with + `First_child -> fprintf ppf "%s" Pretty.down_arrow + | `Next_sibling -> fprintf ppf "%s" Pretty.right_arrow + | `Parent -> fprintf ppf "%s" Pretty.up_arrow + | `Previous_sibling -> fprintf ppf "%s" Pretty.left_arrow + | `Stay -> fprintf ppf "%s" Pretty.bullet + + let print_table pr_e ppf m = + iter (fun i v -> fprintf ppf "%a: %a" print i pr_e v; + if (idx i) < 4 then fprintf ppf ", ") m + end + +type predicate = Move of move * State.t | Is_first_child | Is_next_sibling - | Is of (Tree.NodeKind.t) + | Is of Tree.NodeKind.t | Has_first_child | Has_next_sibling -let is_move p = match p with -| First_child | Next_sibling -| Parent | Previous_sibling | Stay -> true -| _ -> false - - -type atom = predicate * bool * State.t - -module Atom : (Formula.ATOM with type data = atom) = +module Atom = struct module Node = struct - type t = atom + type t = predicate let equal n1 n2 = n1 = n2 let hash n = Hashtbl.hash n end @@ -52,98 +104,97 @@ struct include Hcons.Make(Node) let print ppf a = - let p, b, q = a.node in - if not b then fprintf ppf "%s" Pretty.lnot; - match p with - | First_child -> fprintf ppf "FC(%a)" State.print q - | Next_sibling -> fprintf ppf "NS(%a)" State.print q - | Parent -> fprintf ppf "FC%s(%a)" Pretty.inverse State.print q - | Previous_sibling -> fprintf ppf "NS%s(%a)" Pretty.inverse State.print q - | Stay -> fprintf ppf "%s(%a)" Pretty.epsilon State.print q - | Is_first_child -> fprintf ppf "FC%s?" Pretty.inverse - | Is_next_sibling -> fprintf ppf "NS%s?" Pretty.inverse + match a.node with + | Move (m, q) -> + fprintf ppf "%a%a" Move.print m State.print q + | Is_first_child -> fprintf ppf "%s?" Pretty.up_arrow + | Is_next_sibling -> fprintf ppf "%s?" Pretty.left_arrow | Is k -> fprintf ppf "is-%a?" Tree.NodeKind.print k - | Has_first_child -> fprintf ppf "FC?" - | Has_next_sibling -> fprintf ppf "NS?" - - let neg a = - let p, b, q = a.node in - make (p, not b, q) - + | Has_first_child -> fprintf ppf "%s?" Pretty.down_arrow + | Has_next_sibling -> fprintf ppf "%s?" Pretty.right_arrow end -module SFormula = + +module Formula = struct - include Formula.Make(Atom) + include Boolean.Make(Atom) open Tree.NodeKind - let mk_atom a b c = atom_ (Atom.make (a,b,c)) - let mk_kind k = mk_atom (Is k) true State.dummy - let has_first_child = - (mk_atom Has_first_child true State.dummy) + let mk_atom a = atom_ (Atom.make a) + let is k = mk_atom (Is k) - let has_next_sibling = - (mk_atom Has_next_sibling true State.dummy) + let has_first_child = mk_atom Has_first_child - let is_first_child = - (mk_atom Is_first_child true State.dummy) + let has_next_sibling = mk_atom Has_next_sibling - let is_next_sibling = - (mk_atom Is_next_sibling true State.dummy) + let is_first_child = mk_atom Is_first_child - let is_attribute = - (mk_atom (Is Attribute) true State.dummy) + let is_next_sibling = mk_atom Is_next_sibling - let is_element = - (mk_atom (Is Element) true State.dummy) + let is_attribute = mk_atom (Is Attribute) - let is_processing_instruction = - (mk_atom (Is ProcessingInstruction) true State.dummy) + let is_element = mk_atom (Is Element) - let is_comment = - (mk_atom (Is Comment) true State.dummy) + let is_processing_instruction = mk_atom (Is ProcessingInstruction) + let is_comment = mk_atom (Is Comment) + + let mk_move m q = mk_atom (Move(m,q)) let first_child q = - and_ - (mk_atom First_child true q) - has_first_child + and_ + (mk_move `First_child q) + has_first_child let next_sibling q = and_ - (mk_atom Next_sibling true q) + (mk_move `Next_sibling q) has_next_sibling let parent q = and_ - (mk_atom Parent true q) + (mk_move `Parent q) is_first_child let previous_sibling q = and_ - (mk_atom Previous_sibling true q) + (mk_move `Previous_sibling q) is_next_sibling - let stay q = - (mk_atom Stay true q) + let stay q = mk_move `Stay q - let get_states phi = - fold (fun phi acc -> + let get_states_by_move phi = + let table = Move.create_table StateSet.empty in + iter (fun phi -> match expr phi with - | Formula.Atom a -> let _, _, q = Atom.node a in - if q != State.dummy then StateSet.add q acc else acc - | _ -> acc - ) phi StateSet.empty + | Boolean.Atom ({ Atom.node = Move(v,q) ; _ }, _) -> + let s = Move.get table v in + Move.set table v (StateSet.add q s) + | _ -> () + ) phi; + table + let get_states phi = + let table = get_states_by_move phi in + Move.fold (fun _ s acc -> StateSet.union s acc) table StateSet.empty end - -module Transition = Hcons.Make (struct - type t = State.t * QNameSet.t * SFormula.t +module Transition = + struct + include Hcons.Make (struct + type t = State.t * QNameSet.t * Formula.t let equal (a, b, c) (d, e, f) = a == d && b == e && c == f let hash (a, b, c) = - HASHINT4 (PRIME1, a, ((QNameSet.uid b) :> int), ((SFormula.uid c) :> int)) + HASHINT4 (PRIME1, a, ((QNameSet.uid b) :> int), ((Formula.uid c) :> int)) end) + let print ppf t = + let q, l, f = t.node in + fprintf ppf "%a, %a %s %a" + State.print q + QNameSet.print l + Pretty.double_right_arrow + Formula.print f + end module TransList : sig @@ -155,258 +206,30 @@ end = let print ppf ?(sep="\n") l = iter (fun t -> let q, lab, f = Transition.node t in - fprintf ppf "%a, %a -> %a%s" State.print q QNameSet.print lab SFormula.print f sep) l + fprintf ppf "%a, %a → %a%s" + State.print q + QNameSet.print lab + Formula.print f sep) l end -type node_summary = int -let dummy_summary = -1 -(* -4444444444443210 -4 -> kind -3 -> is_left -2 -> is_right -1 -> has_left -0 -> has_right -*) - -let has_right (s : node_summary) : bool = - Obj.magic (s land 1) -let has_left (s : node_summary) : bool = - Obj.magic ((s lsr 1) land 1) - -let is_right (s : node_summary) : bool = - Obj.magic ((s lsr 2) land 1) - -let is_left (s : node_summary) : bool = - Obj.magic ((s lsr 3) land 1) - -let kind (s : node_summary ) : Tree.NodeKind.t = - Obj.magic (s lsr 4) - -let node_summary is_left is_right has_left has_right kind = - ((Obj.magic kind) lsl 4) lor - ((Obj.magic is_left) lsl 3) lor - ((Obj.magic is_right) lsl 2) lor - ((Obj.magic has_left) lsl 1) lor - (Obj.magic has_right) - - - -type config = { - sat : StateSet.t; - unsat : StateSet.t; - todo : TransList.t; - summary : node_summary; -} - -module Config = Hcons.Make(struct - type t = config - let equal c d = - c == d || - c.sat == d.sat && - c.unsat == d.unsat && - c.todo == d.todo && - c.summary == d.summary - - let hash c = - HASHINT4((c.sat.StateSet.id :> int), - (c.unsat.StateSet.id :> int), - (c.todo.TransList.id :> int), - c.summary) -end -) - type t = { id : Uid.t; mutable states : StateSet.t; - mutable selection_states: StateSet.t; - transitions: (State.t, (QNameSet.t*SFormula.t) list) Hashtbl.t; - mutable cache2 : TransList.t Cache.N2.t; - mutable cache4 : Config.t Cache.N4.t; + mutable starting_states : StateSet.t; + mutable selecting_states: StateSet.t; + transitions: (State.t, (QNameSet.t*Formula.t) list) Hashtbl.t; + mutable ranked_states : StateSet.t array } -let next = Uid.make_maker () - -let dummy2 = TransList.cons - (Transition.make (State.dummy,QNameSet.empty, SFormula.false_)) - TransList.nil - - - -let dummy_config = - Config.make { sat = StateSet.empty; - unsat = StateSet.empty; - todo = TransList.nil; - summary = dummy_summary - } - - -let create s ss = - let auto = { id = next (); - states = s; - selection_states = ss; - transitions = Hashtbl.create 17; - cache2 = Cache.N2.create dummy2; - cache4 = Cache.N4.create dummy_config; - } - in - at_exit (fun () -> - let n4 = ref 0 in - let n2 = ref 0 in - Cache.N2.iteri (fun _ _ _ b -> if b then incr n2) auto.cache2; - Cache.N4.iteri (fun _ _ _ _ _ b -> if b then incr n4) auto.cache4; - Logger.msg `STATS "automaton %i, cache2: %i entries, cache6: %i entries" - (auto.id :> int) !n2 !n4; - let c2l, c2u = Cache.N2.stats auto.cache2 in - let c4l, c4u = Cache.N4.stats auto.cache4 in - Logger.msg `STATS - "cache2: length: %i, used: %i, occupation: %f" - c2l c2u (float c2u /. float c2l); - Logger.msg `STATS - "cache4: length: %i, used: %i, occupation: %f" - c4l c4u (float c4u /. float c4l) - - ); - auto - -let reset a = - a.cache4 <- Cache.N4.create (Cache.N4.dummy a.cache4) - -let full_reset a = - reset a; - a.cache2 <- Cache.N2.create (Cache.N2.dummy a.cache2) - - -let get_trans_aux a tag states = - StateSet.fold (fun q acc0 -> - try - let trs = Hashtbl.find a.transitions q in - List.fold_left (fun acc1 (labs, phi) -> - if QNameSet.mem tag labs then TransList.cons (Transition.make (q, labs, phi)) acc1 else acc1) acc0 trs - with Not_found -> acc0 - ) states TransList.nil - - -let get_trans a tag states = - let trs = - Cache.N2.find a.cache2 - (tag.QName.id :> int) (states.StateSet.id :> int) - in - if trs == dummy2 then - let trs = get_trans_aux a tag states in - (Cache.N2.add - a.cache2 - (tag.QName.id :> int) - (states.StateSet.id :> int) trs; trs) - else trs - -let simplify_atom atom pos q { Config.node=config; _ } = - if (pos && StateSet.mem q config.sat) - || ((not pos) && StateSet.mem q config.unsat) then SFormula.true_ - else if (pos && StateSet.mem q config.unsat) - || ((not pos) && StateSet.mem q config.sat) then SFormula.false_ - else atom - -let eval_form phi fcs nss ps ss summary = - let rec loop phi = - begin match SFormula.expr phi with - Formula.True | Formula.False -> phi - | Formula.Atom a -> - let p, b, q = Atom.node a in begin - match p with - | First_child -> simplify_atom phi b q fcs - | Next_sibling -> simplify_atom phi b q nss - | Parent | Previous_sibling -> simplify_atom phi b q ps - | Stay -> simplify_atom phi b q ss - | Is_first_child -> SFormula.of_bool (b == (is_left summary)) - | Is_next_sibling -> SFormula.of_bool (b == (is_right summary)) - | Is k -> SFormula.of_bool (b == (k == (kind summary))) - | Has_first_child -> SFormula.of_bool (b == (has_left summary)) - | Has_next_sibling -> SFormula.of_bool (b == (has_right summary)) - end - | Formula.And(phi1, phi2) -> SFormula.and_ (loop phi1) (loop phi2) - | Formula.Or (phi1, phi2) -> SFormula.or_ (loop phi1) (loop phi2) - end - in - loop phi - - - -let eval_trans auto fcs nss ps ss = - let fcsid = (fcs.Config.id :> int) in - let nssid = (nss.Config.id :> int) in - let psid = (ps.Config.id :> int) in - let rec loop old_config = - let oid = (old_config.Config.id :> int) in - let res = - let res = Cache.N4.find auto.cache4 oid fcsid nssid psid in - if res != dummy_config then res - else - let { sat = old_sat; - unsat = old_unsat; - todo = old_todo; - summary = old_summary } = old_config.Config.node - in - let sat, unsat, removed, kept, todo = - TransList.fold - (fun trs acc -> - let q, lab, phi = Transition.node trs in - let a_sat, a_unsat, a_rem, a_kept, a_todo = acc in - if StateSet.mem q a_sat || StateSet.mem q a_unsat then acc else - let new_phi = - eval_form phi fcs nss ps old_config old_summary - in - if SFormula.is_true new_phi then - StateSet.add q a_sat, a_unsat, StateSet.add q a_rem, a_kept, a_todo - else if SFormula.is_false new_phi then - a_sat, StateSet.add q a_unsat, StateSet.add q a_rem, a_kept, a_todo - else - let new_tr = Transition.make (q, lab, new_phi) in - (a_sat, a_unsat, a_rem, StateSet.add q a_kept, (TransList.cons new_tr a_todo)) - ) old_todo (old_sat, old_unsat, StateSet.empty, StateSet.empty, TransList.nil) - in - (* States that have been removed from the todo list and not kept are now - unsatisfiable *) - let unsat = StateSet.union unsat (StateSet.diff removed kept) in - (* States that were found once to be satisfiable remain so *) - let unsat = StateSet.diff unsat sat in - let new_config = Config.make { old_config.Config.node with sat; unsat; todo; } in - Cache.N4.add auto.cache4 oid fcsid nssid psid new_config; - new_config - in - if res == old_config then res else loop res - in - loop ss - -(* - [add_trans a q labels f] adds a transition [(q,labels) -> f] to the - automaton [a] but ensures that transitions remains pairwise disjoint -*) +let uid t = t.id -let add_trans a q s f = - let trs = try Hashtbl.find a.transitions q with Not_found -> [] in - let cup, ntrs = - List.fold_left (fun (acup, atrs) (labs, phi) -> - let lab1 = QNameSet.inter labs s in - let lab2 = QNameSet.diff labs s in - let tr1 = - if QNameSet.is_empty lab1 then [] - else [ (lab1, SFormula.or_ phi f) ] - in - let tr2 = - if QNameSet.is_empty lab2 then [] - else [ (lab2, SFormula.or_ phi f) ] - in - (QNameSet.union acup labs, tr1@ tr2 @ atrs) - ) (QNameSet.empty, []) trs - in - let rem = QNameSet.diff s cup in - let ntrs = if QNameSet.is_empty rem then ntrs - else (rem, f) :: ntrs - in - Hashtbl.replace a.transitions q ntrs +let get_states a = a.states +let get_starting_states a = a.starting_states +let get_selecting_states a = a.selecting_states +let get_states_by_rank a = a.ranked_states +let get_max_rank a = Array.length a.ranked_states - 1 let _pr_buff = Buffer.create 50 let _str_fmt = formatter_of_buffer _pr_buff @@ -415,14 +238,22 @@ let _flush_str_fmt () = pp_print_flush _str_fmt (); Buffer.clear _pr_buff; s let print fmt a = + let _ = _flush_str_fmt() in fprintf fmt "Internal UID: %i@\n\ States: %a@\n\ + Number of states: %i@\n\ + Starting states: %a@\n\ Selection states: %a@\n\ + Ranked states: %a@\n\ Alternating transitions:@\n" (a.id :> int) StateSet.print a.states - StateSet.print a.selection_states; + (StateSet.cardinal a.states) + StateSet.print a.starting_states + StateSet.print a.selecting_states + (let r = ref 0 in Pretty.print_array ~sep:", " (fun ppf s -> + fprintf ppf "%i:%a" !r StateSet.print s; incr r)) a.ranked_states; let trs = Hashtbl.fold (fun q t acc -> List.fold_left (fun acc (s , f) -> (q,s,f)::acc) acc t) @@ -430,18 +261,19 @@ let print fmt a = [] in let sorted_trs = List.stable_sort (fun (q1, s1, _) (q2, s2, _) -> - let c = State.compare q1 q2 in - (if c == 0 then QNameSet.compare s1 s2 else c)) + let c = State.compare q2 q1 in if c == 0 then QNameSet.compare s2 s1 else c) trs in let _ = _flush_str_fmt () in - let strs_strings, max_pre, max_all = List.fold_left (fun (accl, accp, acca) (q, s, f) -> - let s1 = State.print _str_fmt q; _flush_str_fmt () in - let s2 = QNameSet.print _str_fmt s; _flush_str_fmt () in - let s3 = SFormula.print _str_fmt f; _flush_str_fmt () in - let pre = Pretty.length s1 + Pretty.length s2 in - let all = Pretty.length s3 in - ( (q, s1, s2, s3) :: accl, max accp pre, max acca all) - ) ([], 0, 0) sorted_trs + let strs_strings, max_pre, max_all = + List.fold_left (fun (accl, accp, acca) (q, s, f) -> + let s1 = State.print _str_fmt q; _flush_str_fmt () in + let s2 = QNameSet.print _str_fmt s; _flush_str_fmt () in + let s3 = Formula.print _str_fmt f; _flush_str_fmt () in + let pre = Pretty.length s1 + Pretty.length s2 in + let all = Pretty.length s3 in + ( (q, s1, s2, s3) :: accl, max accp pre, max acca all) + ) ([], 0, 0) sorted_trs in let line = Pretty.line (max_all + max_pre + 6) in let prev_q = ref State.dummy in @@ -450,11 +282,34 @@ let print fmt a = if !prev_q != q && !prev_q != State.dummy then fprintf fmt "%s@\n" line; prev_q := q; fprintf fmt "%s, %s" s1 s2; - fprintf fmt "%s" (Pretty.padding (max_pre - Pretty.length s1 - Pretty.length s2)); + fprintf fmt "%s" + (Pretty.padding (max_pre - Pretty.length s1 - Pretty.length s2)); fprintf fmt " %s %s@\n" Pretty.right_arrow s3; ) strs_strings; fprintf fmt "%s@\n" line + +let get_trans a tag states = + StateSet.fold (fun q acc0 -> + try + let trs = Hashtbl.find a.transitions q in + List.fold_left (fun acc1 (labs, phi) -> + if QNameSet.mem tag labs then + TransList.cons (Transition.make (q, labs, phi)) acc1 + else acc1) acc0 trs + with Not_found -> acc0 + ) states TransList.nil + + +let get_form a tag q = + try + let trs = Hashtbl.find a.transitions q in + List.fold_left (fun aphi (labs, phi) -> + if QNameSet.mem tag labs then Formula.or_ aphi phi else aphi + ) Formula.false_ trs + with + Not_found -> Formula.false_ + (* [complete transitions a] ensures that for each state q and each symbols s in the alphabet, a transition q, s exists. @@ -463,19 +318,24 @@ let print fmt a = let complete_transitions a = StateSet.iter (fun q -> - let qtrans = Hashtbl.find a.transitions q in - let rem = - List.fold_left (fun rem (labels, _) -> - QNameSet.diff rem labels) QNameSet.any qtrans - in - let nqtrans = - if QNameSet.is_empty rem then qtrans - else - (rem, SFormula.false_) :: qtrans - in - Hashtbl.replace a.transitions q nqtrans + if StateSet.mem q a.starting_states then () + else + let qtrans = Hashtbl.find a.transitions q in + let rem = + List.fold_left (fun rem (labels, _) -> + QNameSet.diff rem labels) QNameSet.any qtrans + in + let nqtrans = + if QNameSet.is_empty rem then qtrans + else + (rem, Formula.false_) :: qtrans + in + Hashtbl.replace a.transitions q nqtrans ) a.states +(* [cleanup_states] remove states that do not lead to a + selecting states *) + let cleanup_states a = let memo = ref StateSet.empty in let rec loop q = @@ -483,10 +343,10 @@ let cleanup_states a = memo := StateSet.add q !memo; let trs = try Hashtbl.find a.transitions q with Not_found -> [] in List.iter (fun (_, phi) -> - StateSet.iter loop (SFormula.get_states phi)) trs + StateSet.iter loop (Formula.get_states phi)) trs end in - StateSet.iter loop a.selection_states; + StateSet.iter loop a.selecting_states; let unused = StateSet.diff a.states !memo in StateSet.iter (fun q -> Hashtbl.remove a.transitions q) unused; a.states <- !memo @@ -500,62 +360,332 @@ let normalize_negations auto = let memo_state = Hashtbl.create 17 in let todo = Queue.create () in let rec flip b f = - match SFormula.expr f with - Formula.True | Formula.False -> if b then f else SFormula.not_ f - | Formula.Or(f1, f2) -> (if b then SFormula.or_ else SFormula.and_)(flip b f1) (flip b f2) - | Formula.And(f1, f2) -> (if b then SFormula.and_ else SFormula.or_)(flip b f1) (flip b f2) - | Formula.Atom(a) -> begin - let l, b', q = Atom.node a in - if q == State.dummy then if b then f else SFormula.not_ f - else - if b == b' then begin - (* a appears positively, either no negation or double negation *) - if not (Hashtbl.mem memo_state (q,b)) then Queue.add (q,true) todo; - SFormula.atom_ (Atom.make (l, true, q)) - end else begin + match Formula.expr f with + Boolean.True | Boolean.False -> if b then f else Formula.not_ f + | Boolean.Or(f1, f2) -> + (if b then Formula.or_ else Formula.and_)(flip b f1) (flip b f2) + | Boolean.And(f1, f2) -> + (if b then Formula.and_ else Formula.or_)(flip b f1) (flip b f2) + | Boolean.Atom(a, b') -> begin + match a.Atom.node with + | Move (m, q) -> + if b == b' then begin + (* a appears positively, either no negation or double negation *) + if not (Hashtbl.mem memo_state (q,b)) then Queue.add (q,true) todo; + Formula.mk_atom (Move(m, q)) + end else begin (* need to reverse the atom either we have a positive state deep below a negation or we have a negative state in a positive formula b' = sign of the state b = sign of the enclosing formula *) - let not_q = - try + let not_q = + try (* does the inverted state of q exist ? *) - Hashtbl.find memo_state (q, false) - with - Not_found -> + Hashtbl.find memo_state (q, false) + with + Not_found -> (* create a new state and add it to the todo queue *) - let nq = State.make () in - auto.states <- StateSet.add nq auto.states; - Hashtbl.add memo_state (q, false) nq; - Queue.add (q, false) todo; nq - in - SFormula.atom_ (Atom.make (l, true, not_q)) - end + let nq = State.make () in + auto.states <- StateSet.add nq auto.states; + Hashtbl.add memo_state (q, false) nq; + Queue.add (q, false) todo; nq + in + Formula.mk_atom (Move (m,not_q)) + end + | _ -> if b then f else Formula.not_ f end in (* states that are not reachable from a selection stat are not interesting *) - StateSet.iter (fun q -> Queue.add (q, true) todo) auto.selection_states; + StateSet.iter (fun q -> Queue.add (q, true) todo) auto.selecting_states; while not (Queue.is_empty todo) do let (q, b) as key = Queue.pop todo in - let q' = - try - Hashtbl.find memo_state key - with - Not_found -> - let nq = if b then q else - let nq = State.make () in - auto.states <- StateSet.add nq auto.states; - nq - in - Hashtbl.add memo_state key nq; nq - in - let trans = Hashtbl.find auto.transitions q in - let trans' = List.map (fun (lab, f) -> lab, flip b f) trans in - Hashtbl.replace auto.transitions q' trans'; + if not (StateSet.mem q auto.starting_states) then + let q' = + try + Hashtbl.find memo_state key + with + Not_found -> + let nq = if b then q else + let nq = State.make () in + auto.states <- StateSet.add nq auto.states; + nq + in + Hashtbl.add memo_state key nq; nq + in + let trans = try Hashtbl.find auto.transitions q with Not_found -> [] in + let trans' = List.map (fun (lab, f) -> lab, flip b f) trans in + Hashtbl.replace auto.transitions q' trans'; done; cleanup_states auto +(* [compute_dependencies auto] returns a hash table storing for each + states [q] a Move.table containing the set of states on which [q] + depends (loosely). [q] depends on [q'] if there is a transition + [q, {...} -> phi], where [q'] occurs in [phi]. +*) +let compute_dependencies auto = + let edges = Hashtbl.create 17 in + StateSet.iter + (fun q -> Hashtbl.add edges q (Move.create_table StateSet.empty)) + auto.starting_states; + Hashtbl.iter (fun q trans -> + let moves = try Hashtbl.find edges q with Not_found -> + let m = Move.create_table StateSet.empty in + Hashtbl.add edges q m; + m + in + List.iter (fun (_, phi) -> + let m_phi = Formula.get_states_by_move phi in + Move.iter (fun m set -> + Move.set moves m (StateSet.union set (Move.get moves m))) + m_phi) trans) auto.transitions; + + edges + + +let compute_rank auto = + let dependencies = compute_dependencies auto in + let upward = [ `Stay ; `Parent ; `Previous_sibling ] in + let downward = [ `Stay; `First_child; `Next_sibling ] in + let swap dir = if dir == upward then downward else upward in + let is_satisfied dir q t = + Move.for_all (fun d set -> + if List.mem d dir then + StateSet.(is_empty (remove q set)) + else StateSet.is_empty set) t + in + let update_dependencies dir initacc = + let rec loop acc = + let new_acc = + Hashtbl.fold (fun q deps acc -> + let to_remove = StateSet.union acc initacc in + List.iter + (fun m -> + Move.set deps m (StateSet.diff (Move.get deps m) to_remove) + ) + dir; + if is_satisfied dir q deps then StateSet.add q acc else acc + ) dependencies acc + in + if acc == new_acc then new_acc else loop new_acc + in + let satisfied = loop StateSet.empty in + StateSet.iter (fun q -> + Hashtbl.remove dependencies q) satisfied; + satisfied + in + let current_states = ref StateSet.empty in + let rank_list = ref [] in + let rank = ref 0 in + let current_dir = ref upward in + let detect_cycle = ref 0 in + while Hashtbl.length dependencies != 0 do + let new_sat = update_dependencies !current_dir !current_states in + if StateSet.is_empty new_sat then incr detect_cycle; + if !detect_cycle > 2 then assert false; + rank_list := (!rank, new_sat) :: !rank_list; + rank := !rank + 1; + current_dir := swap !current_dir; + current_states := StateSet.union new_sat !current_states; + done; + let by_rank = Hashtbl.create 17 in + List.iter (fun (r,s) -> + let set = try Hashtbl.find by_rank r with Not_found -> StateSet.empty in + Hashtbl.replace by_rank r (StateSet.union s set)) !rank_list; + auto.ranked_states <- + Array.init (Hashtbl.length by_rank) (fun i -> Hashtbl.find by_rank i) + + +module Builder = + struct + type auto = t + type t = auto + let next = Uid.make_maker () + + let make () = + let auto = + { + id = next (); + states = StateSet.empty; + starting_states = StateSet.empty; + selecting_states = StateSet.empty; + transitions = Hashtbl.create MED_H_SIZE; + ranked_states = [| |] + } + in + auto + + let add_state a ?(starting=false) ?(selecting=false) q = + a.states <- StateSet.add q a.states; + if starting then a.starting_states <- StateSet.add q a.starting_states; + if selecting then a.selecting_states <- StateSet.add q a.selecting_states + + let add_trans a q s f = + if not (StateSet.mem q a.states) then add_state a q; + let trs = try Hashtbl.find a.transitions q with Not_found -> [] in + let cup, ntrs = + List.fold_left (fun (acup, atrs) (labs, phi) -> + let lab1 = QNameSet.inter labs s in + let lab2 = QNameSet.diff labs s in + let tr1 = + if QNameSet.is_empty lab1 then [] + else [ (lab1, Formula.or_ phi f) ] + in + let tr2 = + if QNameSet.is_empty lab2 then [] + else [ (lab2, Formula.or_ phi f) ] + in + (QNameSet.union acup labs, tr1@ tr2 @ atrs) + ) (QNameSet.empty, []) trs + in + let rem = QNameSet.diff s cup in + let ntrs = if QNameSet.is_empty rem then ntrs + else (rem, f) :: ntrs + in + Hashtbl.replace a.transitions q ntrs + + let finalize a = + complete_transitions a; + normalize_negations a; + compute_rank a; + a + end + + +let map_set f s = + StateSet.fold (fun q a -> StateSet.add (f q) a) s StateSet.empty + +let map_hash fk fv h = + let h' = Hashtbl.create (Hashtbl.length h) in + let () = Hashtbl.iter (fun k v -> Hashtbl.add h' (fk k) (fv v)) h in + h' + +let rec map_form f phi = + match Formula.expr phi with + | Boolean.Or(phi1, phi2) -> Formula.or_ (map_form f phi1) (map_form f phi2) + | Boolean.And(phi1, phi2) -> Formula.and_ (map_form f phi1) (map_form f phi2) + | Boolean.Atom({ Atom.node = Move(m,q); _}, b) -> + let a = Formula.mk_atom (Move (m,f q)) in + if b then a else Formula.not_ a + | _ -> phi + +let rename_states mapper a = + let rename q = try Hashtbl.find mapper q with Not_found -> q in + { Builder.make () with + states = map_set rename a.states; + starting_states = map_set rename a.starting_states; + selecting_states = map_set rename a.selecting_states; + transitions = + map_hash + rename + (fun l -> + (List.map (fun (labels, form) -> (labels, map_form rename form)) l)) + a.transitions; + ranked_states = Array.map (map_set rename) a.ranked_states + } + +let copy a = + let mapper = Hashtbl.create MED_H_SIZE in + let () = + StateSet.iter (fun q -> Hashtbl.add mapper q (State.make())) a.states + in + rename_states mapper a + + +let concat a1 a2 = + let a1 = copy a1 in + let a2 = copy a2 in + let link_phi = + StateSet.fold + (fun q phi -> Formula.(or_ (stay q) phi)) + a1.selecting_states Formula.false_ + in + Hashtbl.iter (fun q trs -> Hashtbl.add a1.transitions q trs) + a2.transitions; + StateSet.iter + (fun q -> + Hashtbl.replace a1.transitions q [(QNameSet.any, link_phi)]) + a2.starting_states; + let a = { a1 with + states = StateSet.union a1.states a2.states; + selecting_states = a2.selecting_states; + transitions = a1.transitions; + } + in compute_rank a; a + +let merge a1 a2 = + let a1 = copy a1 in + let a2 = copy a2 in + let a = { a1 with + states = StateSet.union a1.states a2.states; + selecting_states = StateSet.union a1.selecting_states a2.selecting_states; + starting_states = StateSet.union a1.starting_states a2.starting_states; + transitions = + let () = + Hashtbl.iter (fun k v -> Hashtbl.add a1.transitions k v) a2.transitions + in + a1.transitions + } in + compute_rank a ; a + + +let link a1 a2 q link_phi = + let a = { a1 with + states = StateSet.union a1.states a2.states; + selecting_states = StateSet.singleton q; + starting_states = StateSet.union a1.starting_states a2.starting_states; + transitions = + let () = + Hashtbl.iter (fun k v -> Hashtbl.add a1.transitions k v) a2.transitions + in + Hashtbl.add a1.transitions q [(QNameSet.any, link_phi)]; + a1.transitions + } + in + compute_rank a; a + +let union a1 a2 = + let a1 = copy a1 in + let a2 = copy a2 in + let q = State.make () in + let link_phi = + StateSet.fold + (fun q phi -> Formula.(or_ (stay q) phi)) + (StateSet.union a1.selecting_states a2.selecting_states) + Formula.false_ + in + link a1 a2 q link_phi + +let inter a1 a2 = + let a1 = copy a1 in + let a2 = copy a2 in + let q = State.make () in + let link_phi = + StateSet.fold + (fun q phi -> Formula.(and_ (stay q) phi)) + (StateSet.union a1.selecting_states a2.selecting_states) + Formula.true_ + in + link a1 a2 q link_phi + +let neg a = + let a = copy a in + let q = State.make () in + let link_phi = + StateSet.fold + (fun q phi -> Formula.(and_ (not_(stay q)) phi)) + a.selecting_states + Formula.true_ + in + let () = Hashtbl.add a.transitions q [(QNameSet.any, link_phi)] in + let a = + { a with + selecting_states = StateSet.singleton q; + } + in + normalize_negations a; compute_rank a; a +let diff a1 a2 = inter a1 (neg a2)