X-Git-Url: http://git.nguyen.vg/gitweb/?p=tatoo.git;a=blobdiff_plain;f=src%2Fata.ml;h=a4ea306d87267dbd91713ca53e5e275effbf06c9;hp=919dceda2ccdea4b4d90e46a9e0e8f4e6e7f292d;hb=da84ba92e452d4d2a3eaf89f7638db25a7f84909;hpb=67121f5969c723a6cdb7a638fae344dc14f20751 diff --git a/src/ata.ml b/src/ata.ml index 919dced..a4ea306 100644 --- a/src/ata.ml +++ b/src/ata.ml @@ -13,38 +13,28 @@ (* *) (***********************************************************************) -(* - Time-stamp: -*) - INCLUDE "utils.ml" open Format - -type predicate = | First_child - | Next_sibling - | Parent - | Previous_sibling - | Stay +open Misc +type move = [ `First_child + | `Next_sibling + | `Parent + | `Previous_sibling + | `Stay ] + +type predicate = Move of move * State.t | Is_first_child | Is_next_sibling - | Is of (Tree.NodeKind.t) + | Is of Tree.NodeKind.t | Has_first_child | Has_next_sibling -let is_move p = match p with -| First_child | Next_sibling -| Parent | Previous_sibling | Stay -> true -| _ -> false - - -type atom = predicate * bool * State.t - -module Atom : (Formula.ATOM with type data = atom) = +module Atom = struct module Node = struct - type t = atom + type t = predicate let equal n1 n2 = n1 = n2 let hash n = Hashtbl.hash n end @@ -52,98 +42,97 @@ struct include Hcons.Make(Node) let print ppf a = - let p, b, q = a.node in - if not b then fprintf ppf "%s" Pretty.lnot; - match p with - | First_child -> fprintf ppf "FC(%a)" State.print q - | Next_sibling -> fprintf ppf "NS(%a)" State.print q - | Parent -> fprintf ppf "FC%s(%a)" Pretty.inverse State.print q - | Previous_sibling -> fprintf ppf "NS%s(%a)" Pretty.inverse State.print q - | Stay -> fprintf ppf "%s(%a)" Pretty.epsilon State.print q - | Is_first_child -> fprintf ppf "FC%s?" Pretty.inverse - | Is_next_sibling -> fprintf ppf "NS%s?" Pretty.inverse + match a.node with + | Move (m, q) -> begin + match m with + `First_child -> fprintf ppf "%s" Pretty.down_arrow + | `Next_sibling -> fprintf ppf "%s" Pretty.right_arrow + | `Parent -> fprintf ppf "%s" Pretty.up_arrow + | `Previous_sibling -> fprintf ppf "%s" Pretty.left_arrow + | `Stay -> fprintf ppf "%s" Pretty.bullet + end; + fprintf ppf "%a" State.print q + | Is_first_child -> fprintf ppf "%s?" Pretty.up_arrow + | Is_next_sibling -> fprintf ppf "%s?" Pretty.left_arrow | Is k -> fprintf ppf "is-%a?" Tree.NodeKind.print k - | Has_first_child -> fprintf ppf "FC?" - | Has_next_sibling -> fprintf ppf "NS?" - - let neg a = - let p, b, q = a.node in - make (p, not b, q) - + | Has_first_child -> fprintf ppf "%s?" Pretty.down_arrow + | Has_next_sibling -> fprintf ppf "%s?" Pretty.right_arrow end -module SFormula = + +module Formula = struct - include Formula.Make(Atom) + include Boolean.Make(Atom) open Tree.NodeKind - let mk_atom a b c = atom_ (Atom.make (a,b,c)) - let mk_kind k = mk_atom (Is k) true State.dummy - let has_first_child = - (mk_atom Has_first_child true State.dummy) + let mk_atom a = atom_ (Atom.make a) + let is k = mk_atom (Is k) - let has_next_sibling = - (mk_atom Has_next_sibling true State.dummy) + let has_first_child = mk_atom Has_first_child - let is_first_child = - (mk_atom Is_first_child true State.dummy) + let has_next_sibling = mk_atom Has_next_sibling - let is_next_sibling = - (mk_atom Is_next_sibling true State.dummy) + let is_first_child = mk_atom Is_first_child - let is_attribute = - (mk_atom (Is Attribute) true State.dummy) + let is_next_sibling = mk_atom Is_next_sibling - let is_element = - (mk_atom (Is Element) true State.dummy) + let is_attribute = mk_atom (Is Attribute) - let is_processing_instruction = - (mk_atom (Is ProcessingInstruction) true State.dummy) + let is_element = mk_atom (Is Element) - let is_comment = - (mk_atom (Is Comment) true State.dummy) + let is_processing_instruction = mk_atom (Is ProcessingInstruction) + let is_comment = mk_atom (Is Comment) + + let mk_move m q = mk_atom (Move(m,q)) let first_child q = - and_ - (mk_atom First_child true q) - has_first_child + and_ + (mk_move `First_child q) + has_first_child let next_sibling q = and_ - (mk_atom Next_sibling true q) + (mk_move `Next_sibling q) has_next_sibling let parent q = and_ - (mk_atom Parent true q) + (mk_move `Parent q) is_first_child let previous_sibling q = and_ - (mk_atom Previous_sibling true q) + (mk_move `Previous_sibling q) is_next_sibling - let stay q = - (mk_atom Stay true q) + let stay q = mk_move `Stay q let get_states phi = fold (fun phi acc -> match expr phi with - | Formula.Atom a -> let _, _, q = Atom.node a in - if q != State.dummy then StateSet.add q acc else acc + | Boolean.Atom ({ Atom.node = Move(_,q) ; _ }, _) -> StateSet.add q acc | _ -> acc ) phi StateSet.empty end - -module Transition = Hcons.Make (struct - type t = State.t * QNameSet.t * SFormula.t +module Transition = + struct + include Hcons.Make (struct + type t = State.t * QNameSet.t * Formula.t let equal (a, b, c) (d, e, f) = a == d && b == e && c == f let hash (a, b, c) = - HASHINT4 (PRIME1, a, ((QNameSet.uid b) :> int), ((SFormula.uid c) :> int)) + HASHINT4 (PRIME1, a, ((QNameSet.uid b) :> int), ((Formula.uid c) :> int)) end) + let print ppf t = + let q, l, f = t.node in + fprintf ppf "%a, %a %s %a" + State.print q + QNameSet.print l + Pretty.double_right_arrow + Formula.print f + end module TransList : sig @@ -155,266 +144,25 @@ end = let print ppf ?(sep="\n") l = iter (fun t -> let q, lab, f = Transition.node t in - fprintf ppf "%a, %a -> %a%s" State.print q QNameSet.print lab SFormula.print f sep) l + fprintf ppf "%a, %a -> %a%s" State.print q QNameSet.print lab Formula.print f sep) l end + type t = { id : Uid.t; mutable states : StateSet.t; - mutable selection_states: StateSet.t; - transitions: (State.t, (QNameSet.t*SFormula.t) list) Hashtbl.t; - mutable cache2 : TransList.t Cache.N2.t; - mutable cache6 : (TransList.t*StateSet.t) Cache.N6.t; + mutable starting_states : StateSet.t; + mutable selecting_states: StateSet.t; + transitions: (State.t, (QNameSet.t*Formula.t) list) Hashtbl.t; } -let next = Uid.make_maker () +let uid t = t.id -let dummy2 = TransList.cons - (Transition.make (State.dummy,QNameSet.empty, SFormula.false_)) - TransList.nil +let get_states a = a.states +let get_starting_states a = a.starting_states +let get_selecting_states a = a.selecting_states -let dummy6 = (dummy2, StateSet.empty) - - -let create s ss = - let auto = { id = next (); - states = s; - selection_states = ss; - transitions = Hashtbl.create 17; - cache2 = Cache.N2.create dummy2; - cache6 = Cache.N6.create dummy6; - } - in - at_exit (fun () -> - let n6 = ref 0 in - let n2 = ref 0 in - Cache.N2.iteri (fun _ _ _ b -> if b then incr n2) auto.cache2; - Cache.N6.iteri (fun _ _ _ _ _ _ _ b -> if b then incr n6) auto.cache6; - Format.eprintf "INFO: automaton %i, cache2: %i entries, cache6: %i entries\n%!" - (auto.id :> int) !n2 !n6; - let c2l, c2u = Cache.N2.stats auto.cache2 in - let c6l, c6u = Cache.N6.stats auto.cache6 in - Format.eprintf "INFO: cache2: length: %i, used: %i, occupation: %f\n%!" c2l c2u (float c2u /. float c2l); - Format.eprintf "INFO: cache6: length: %i, used: %i, occupation: %f\n%!" c6l c6u (float c6u /. float c6l) - - ); - auto - -let reset a = - a.cache2 <- Cache.N2.create dummy2; - a.cache6 <- Cache.N6.create dummy6 - - -let get_trans_aux a tag states = - StateSet.fold (fun q acc0 -> - try - let trs = Hashtbl.find a.transitions q in - List.fold_left (fun acc1 (labs, phi) -> - if QNameSet.mem tag labs then TransList.cons (Transition.make (q, labs, phi)) acc1 else acc1) acc0 trs - with Not_found -> acc0 - ) states TransList.nil - - -let get_trans a tag states = - let trs = - Cache.N2.find a.cache2 - (tag.QName.id :> int) (states.StateSet.id :> int) - in - if trs == dummy2 then - let trs = get_trans_aux a tag states in - (Cache.N2.add - a.cache2 - (tag.QName.id :> int) - (states.StateSet.id :> int) trs; trs) - else trs - - - -let eval_form phi fcs nss ps ss is_left is_right has_left has_right kind = - let rec loop phi = - begin match SFormula.expr phi with - Formula.True | Formula.False -> phi - | Formula.Atom a -> - let p, b, q = Atom.node a in begin - match p with - | First_child -> - if b == StateSet.mem q fcs then SFormula.true_ else phi - | Next_sibling -> - if b == StateSet.mem q nss then SFormula.true_ else phi - | Parent | Previous_sibling -> - if b == StateSet.mem q ps then SFormula.true_ else phi - | Stay -> - if b == StateSet.mem q ss then SFormula.true_ else phi - | Is_first_child -> SFormula.of_bool (b == is_left) - | Is_next_sibling -> SFormula.of_bool (b == is_right) - | Is k -> SFormula.of_bool (b == (k == kind)) - | Has_first_child -> SFormula.of_bool (b == has_left) - | Has_next_sibling -> SFormula.of_bool (b == has_right) - end - | Formula.And(phi1, phi2) -> SFormula.and_ (loop phi1) (loop phi2) - | Formula.Or (phi1, phi2) -> SFormula.or_ (loop phi1) (loop phi2) - end - in - loop phi - -let int_of_conf is_left is_right has_left has_right kind = - ((Obj.magic kind) lsl 4) lor - ((Obj.magic is_left) lsl 3) lor - ((Obj.magic is_right) lsl 2) lor - ((Obj.magic has_left) lsl 1) lor - (Obj.magic has_right) - -let eval_trans auto ltrs fcs nss ps ss is_left is_right has_left has_right kind = - let n = int_of_conf is_left is_right has_left has_right kind - and k = (fcs.StateSet.id :> int) - and l = (nss.StateSet.id :> int) - and m = (ps.StateSet.id :> int) in - let rec loop ltrs ss = - let i = (ltrs.TransList.id :> int) - and j = (ss.StateSet.id :> int) in - let (new_ltrs, new_ss) as res = - let res = Cache.N6.find auto.cache6 i j k l m n in - if res == dummy6 then - let res = - TransList.fold (fun trs (acct, accs) -> - let q, lab, phi = Transition.node trs in - if StateSet.mem q accs then (acct, accs) else - let new_phi = - eval_form - phi fcs nss ps accs - is_left is_right has_left has_right kind - in - if SFormula.is_true new_phi then - (acct, StateSet.add q accs) - else if SFormula.is_false new_phi then - (acct, accs) - else - let new_tr = Transition.make (q, lab, new_phi) in - (TransList.cons new_tr acct, accs) - ) ltrs (TransList.nil, ss) - in - Cache.N6.add auto.cache6 i j k l m n res; res - else - res - in - if new_ss == ss then res else - loop new_ltrs new_ss - in - loop ltrs ss - - -type config = { - sat : StateSet.t; - unsat : StateSet.t; - todo : TransList.t; -} - -module Config = Hcons.Make(struct - type t = config - let equal c d = - c.sat == d.sat && c.unsat == d.unsat && c.todo == d.todo - let hash c = - HASHINT3((c.sat.StateSet.id :> int), - (c.unsat.StateSet.id :> int), - (c.todo.TransList.id :> int)) -end -) - -let simplify_atom atom pos q { Config.node=config; _ } = - if (pos && StateSet.mem q config.sat) - || ((not pos) && StateSet.mem q config.unsat) then SFormula.true_ - else if (pos && StateSet.mem q config.unsat) - || ((not pos) && StateSet.mem q config.sat) then SFormula.false_ - else atom - - -let eval_form2 phi fcs nss ps ss is_left is_right has_left has_right kind = - let rec loop phi = - begin match SFormula.expr phi with - Formula.True | Formula.False -> phi - | Formula.Atom a -> - let p, b, q = Atom.node a in begin - match p with - | First_child -> simplify_atom phi b q fcs - | Next_sibling -> simplify_atom phi b q nss - | Parent | Previous_sibling -> simplify_atom phi b q ps - | Stay -> simplify_atom phi b q ss - | Is_first_child -> SFormula.of_bool (b == is_left) - | Is_next_sibling -> SFormula.of_bool (b == is_right) - | Is k -> SFormula.of_bool (b == (k == kind)) - | Has_first_child -> SFormula.of_bool (b == has_left) - | Has_next_sibling -> SFormula.of_bool (b == has_right) - end - | Formula.And(phi1, phi2) -> SFormula.and_ (loop phi1) (loop phi2) - | Formula.Or (phi1, phi2) -> SFormula.or_ (loop phi1) (loop phi2) - end - in - loop phi - - - -let eval_trans auto fcs nss ps ss is_left is_right has_left has_right kind = - let rec loop old_config = - let { sat = old_sat; unsat = old_unsat; todo = old_todo } = old_config.Config.node in - let sat, unsat, removed, kept, todo = - TransList.fold - (fun trs acc -> - let q, lab, phi = Transition.node trs in - let a_sat, a_unsat, a_rem, a_kept, a_todo = acc in - if StateSet.mem q a_sat || StateSet.mem q a_unsat then acc else - let new_phi = - eval_form2 - phi fcs nss ps old_config - is_left is_right has_left has_right kind - in - if SFormula.is_true new_phi then - StateSet.add q a_sat, a_unsat, StateSet.add q a_rem, a_kept, a_todo - else if SFormula.is_false new_phi then - a_sat, StateSet.add q a_unsat, StateSet.add q a_rem, a_kept, a_todo - else - let new_tr = Transition.make (q, lab, new_phi) in - (a_sat, a_unsat, a_rem, StateSet.add q a_kept, (TransList.cons new_tr a_todo)) - ) old_todo (old_sat, old_unsat, StateSet.empty, StateSet.empty, TransList.nil) - in - (* States that have been removed from the todo list and not kept are now - unsatisfiable *) - let unsat = StateSet.union unsat (StateSet.diff removed kept) in - (* States that were found once to be satisfiable remain so *) - let unsat = StateSet.diff unsat sat in - let new_config = Config.make { sat; unsat; todo } in - if sat == old_sat && unsat == old_unsat && todo == old_todo then new_config - else loop new_config - in - loop ss - -(* - [add_trans a q labels f] adds a transition [(q,labels) -> f] to the - automaton [a] but ensures that transitions remains pairwise disjoint -*) - -let add_trans a q s f = - let trs = try Hashtbl.find a.transitions q with Not_found -> [] in - let cup, ntrs = - List.fold_left (fun (acup, atrs) (labs, phi) -> - let lab1 = QNameSet.inter labs s in - let lab2 = QNameSet.diff labs s in - let tr1 = - if QNameSet.is_empty lab1 then [] - else [ (lab1, SFormula.or_ phi f) ] - in - let tr2 = - if QNameSet.is_empty lab2 then [] - else [ (lab2, SFormula.or_ phi f) ] - in - (QNameSet.union acup labs, tr1@ tr2 @ atrs) - ) (QNameSet.empty, []) trs - in - let rem = QNameSet.diff s cup in - let ntrs = if QNameSet.is_empty rem then ntrs - else (rem, f) :: ntrs - in - Hashtbl.replace a.transitions q ntrs let _pr_buff = Buffer.create 50 let _str_fmt = formatter_of_buffer _pr_buff @@ -423,14 +171,19 @@ let _flush_str_fmt () = pp_print_flush _str_fmt (); Buffer.clear _pr_buff; s let print fmt a = + let _ = _flush_str_fmt() in fprintf fmt - "\nInternal UID: %i@\n\ + "Internal UID: %i@\n\ States: %a@\n\ + Number of states: %i@\n\ + Starting states: %a@\n\ Selection states: %a@\n\ Alternating transitions:@\n" (a.id :> int) StateSet.print a.states - StateSet.print a.selection_states; + (StateSet.cardinal a.states) + StateSet.print a.starting_states + StateSet.print a.selecting_states; let trs = Hashtbl.fold (fun q t acc -> List.fold_left (fun acc (s , f) -> (q,s,f)::acc) acc t) @@ -445,7 +198,7 @@ let print fmt a = let strs_strings, max_pre, max_all = List.fold_left (fun (accl, accp, acca) (q, s, f) -> let s1 = State.print _str_fmt q; _flush_str_fmt () in let s2 = QNameSet.print _str_fmt s; _flush_str_fmt () in - let s3 = SFormula.print _str_fmt f; _flush_str_fmt () in + let s3 = Formula.print _str_fmt f; _flush_str_fmt () in let pre = Pretty.length s1 + Pretty.length s2 in let all = Pretty.length s3 in ( (q, s1, s2, s3) :: accl, max accp pre, max acca all) @@ -453,14 +206,37 @@ let print fmt a = in let line = Pretty.line (max_all + max_pre + 6) in let prev_q = ref State.dummy in + fprintf fmt "%s@\n" line; List.iter (fun (q, s1, s2, s3) -> - if !prev_q != q && !prev_q != State.dummy then fprintf fmt " %s\n%!" line; + if !prev_q != q && !prev_q != State.dummy then fprintf fmt "%s@\n" line; prev_q := q; - fprintf fmt " %s, %s" s1 s2; + fprintf fmt "%s, %s" s1 s2; fprintf fmt "%s" (Pretty.padding (max_pre - Pretty.length s1 - Pretty.length s2)); - fprintf fmt " %s %s@\n%!" Pretty.right_arrow s3; + fprintf fmt " %s %s@\n" Pretty.right_arrow s3; ) strs_strings; - fprintf fmt " %s\n%!" line + fprintf fmt "%s@\n" line + + +let get_trans a tag states = + StateSet.fold (fun q acc0 -> + try + let trs = Hashtbl.find a.transitions q in + List.fold_left (fun acc1 (labs, phi) -> + if QNameSet.mem tag labs then + TransList.cons (Transition.make (q, labs, phi)) acc1 + else acc1) acc0 trs + with Not_found -> acc0 + ) states TransList.nil + + +let get_form a tag q = + try + let trs = Hashtbl.find a.transitions q in + List.fold_left (fun aphi (labs, phi) -> + if QNameSet.mem tag labs then Formula.or_ aphi phi else aphi + ) Formula.false_ trs + with + Not_found -> Formula.false_ (* [complete transitions a] ensures that for each state q @@ -470,19 +246,24 @@ let print fmt a = let complete_transitions a = StateSet.iter (fun q -> - let qtrans = Hashtbl.find a.transitions q in - let rem = - List.fold_left (fun rem (labels, _) -> - QNameSet.diff rem labels) QNameSet.any qtrans - in - let nqtrans = - if QNameSet.is_empty rem then qtrans - else - (rem, SFormula.false_) :: qtrans - in - Hashtbl.replace a.transitions q nqtrans + if StateSet.mem q a.starting_states then () + else + let qtrans = Hashtbl.find a.transitions q in + let rem = + List.fold_left (fun rem (labels, _) -> + QNameSet.diff rem labels) QNameSet.any qtrans + in + let nqtrans = + if QNameSet.is_empty rem then qtrans + else + (rem, Formula.false_) :: qtrans + in + Hashtbl.replace a.transitions q nqtrans ) a.states +(* [cleanup_states] remove states that do not lead to a + selecting states *) + let cleanup_states a = let memo = ref StateSet.empty in let rec loop q = @@ -490,12 +271,11 @@ let cleanup_states a = memo := StateSet.add q !memo; let trs = try Hashtbl.find a.transitions q with Not_found -> [] in List.iter (fun (_, phi) -> - StateSet.iter loop (SFormula.get_states phi)) trs + StateSet.iter loop (Formula.get_states phi)) trs end in - StateSet.iter loop a.selection_states; + StateSet.iter loop a.selecting_states; let unused = StateSet.diff a.states !memo in - eprintf "Unused states %a\n%!" StateSet.print unused; StateSet.iter (fun q -> Hashtbl.remove a.transitions q) unused; a.states <- !memo @@ -505,50 +285,46 @@ let cleanup_states a = *) let normalize_negations auto = - eprintf "Automaton before normalize_trans:\n"; - print err_formatter auto; - eprintf "--------------------\n%!"; - let memo_state = Hashtbl.create 17 in let todo = Queue.create () in let rec flip b f = - match SFormula.expr f with - Formula.True | Formula.False -> if b then f else SFormula.not_ f - | Formula.Or(f1, f2) -> (if b then SFormula.or_ else SFormula.and_)(flip b f1) (flip b f2) - | Formula.And(f1, f2) -> (if b then SFormula.and_ else SFormula.or_)(flip b f1) (flip b f2) - | Formula.Atom(a) -> begin - let l, b', q = Atom.node a in - if q == State.dummy then if b then f else SFormula.not_ f - else - if b == b' then begin - (* a appears positively, either no negation or double negation *) - if not (Hashtbl.mem memo_state (q,b)) then Queue.add (q,true) todo; - SFormula.atom_ (Atom.make (l, true, q)) - end else begin + match Formula.expr f with + Boolean.True | Boolean.False -> if b then f else Formula.not_ f + | Boolean.Or(f1, f2) -> (if b then Formula.or_ else Formula.and_)(flip b f1) (flip b f2) + | Boolean.And(f1, f2) -> (if b then Formula.and_ else Formula.or_)(flip b f1) (flip b f2) + | Boolean.Atom(a, b') -> begin + match a.Atom.node with + | Move (m, q) -> + if b == b' then begin + (* a appears positively, either no negation or double negation *) + if not (Hashtbl.mem memo_state (q,b)) then Queue.add (q,true) todo; + Formula.mk_atom (Move(m, q)) + end else begin (* need to reverse the atom either we have a positive state deep below a negation or we have a negative state in a positive formula b' = sign of the state b = sign of the enclosing formula *) - let not_q = - try + let not_q = + try (* does the inverted state of q exist ? *) - Hashtbl.find memo_state (q, false) - with - Not_found -> + Hashtbl.find memo_state (q, false) + with + Not_found -> (* create a new state and add it to the todo queue *) - let nq = State.make () in - auto.states <- StateSet.add nq auto.states; - Hashtbl.add memo_state (q, false) nq; - Queue.add (q, false) todo; nq - in - SFormula.atom_ (Atom.make (l, true, not_q)) - end + let nq = State.make () in + auto.states <- StateSet.add nq auto.states; + Hashtbl.add memo_state (q, false) nq; + Queue.add (q, false) todo; nq + in + Formula.mk_atom (Move (m,not_q)) + end + | _ -> if b then f else Formula.not_ f end in (* states that are not reachable from a selection stat are not interesting *) - StateSet.iter (fun q -> Queue.add (q, true) todo) auto.selection_states; + StateSet.iter (fun q -> Queue.add (q, true) todo) auto.selecting_states; while not (Queue.is_empty todo) do let (q, b) as key = Queue.pop todo in @@ -564,10 +340,215 @@ let normalize_negations auto = in Hashtbl.add memo_state key nq; nq in - let trans = Hashtbl.find auto.transitions q in + let trans = try Hashtbl.find auto.transitions q with Not_found -> [] in let trans' = List.map (fun (lab, f) -> lab, flip b f) trans in Hashtbl.replace auto.transitions q' trans'; done; cleanup_states auto + + + +module Builder = + struct + type auto = t + type t = auto + let next = Uid.make_maker () + + let make () = + let auto = + { + id = next (); + states = StateSet.empty; + starting_states = StateSet.empty; + selecting_states = StateSet.empty; + transitions = Hashtbl.create MED_H_SIZE; + } + in + (* + at_exit (fun () -> + let n4 = ref 0 in + let n2 = ref 0 in + Cache.N2.iteri (fun _ _ _ b -> if b then incr n2) auto.cache2; + Cache.N4.iteri (fun _ _ _ _ _ b -> if b then incr n4) auto.cache4; + Logger.msg `STATS "automaton %i, cache2: %i entries, cache6: %i entries" + (auto.id :> int) !n2 !n4; + let c2l, c2u = Cache.N2.stats auto.cache2 in + let c4l, c4u = Cache.N4.stats auto.cache4 in + Logger.msg `STATS + "cache2: length: %i, used: %i, occupation: %f" + c2l c2u (float c2u /. float c2l); + Logger.msg `STATS + "cache4: length: %i, used: %i, occupation: %f" + c4l c4u (float c4u /. float c4l) + + ); *) + auto + + let add_state a ?(starting=false) ?(selecting=false) q = + a.states <- StateSet.add q a.states; + if starting then a.starting_states <- StateSet.add q a.starting_states; + if selecting then a.selecting_states <- StateSet.add q a.selecting_states + + let add_trans a q s f = + if not (StateSet.mem q a.states) then add_state a q; + let trs = try Hashtbl.find a.transitions q with Not_found -> [] in + let cup, ntrs = + List.fold_left (fun (acup, atrs) (labs, phi) -> + let lab1 = QNameSet.inter labs s in + let lab2 = QNameSet.diff labs s in + let tr1 = + if QNameSet.is_empty lab1 then [] + else [ (lab1, Formula.or_ phi f) ] + in + let tr2 = + if QNameSet.is_empty lab2 then [] + else [ (lab2, Formula.or_ phi f) ] + in + (QNameSet.union acup labs, tr1@ tr2 @ atrs) + ) (QNameSet.empty, []) trs + in + let rem = QNameSet.diff s cup in + let ntrs = if QNameSet.is_empty rem then ntrs + else (rem, f) :: ntrs + in + Hashtbl.replace a.transitions q ntrs + + let finalize a = + complete_transitions a; + normalize_negations a; + a + end + + +let map_set f s = + StateSet.fold (fun q a -> StateSet.add (f q) a) s StateSet.empty + +let map_hash fk fv h = + let h' = Hashtbl.create (Hashtbl.length h) in + let () = Hashtbl.iter (fun k v -> Hashtbl.add h' (fk k) (fv v)) h in + h' + +let rec map_form f phi = + match Formula.expr phi with + | Boolean.Or(phi1, phi2) -> Formula.or_ (map_form f phi1) (map_form f phi2) + | Boolean.And(phi1, phi2) -> Formula.and_ (map_form f phi1) (map_form f phi2) + | Boolean.Atom({ Atom.node = Move(m,q); _}, b) -> + let a = Formula.mk_atom (Move (m,f q)) in + if b then a else Formula.not_ a + | _ -> phi + +let rename_states mapper a = + let rename q = try Hashtbl.find mapper q with Not_found -> q in + { Builder.make () with + states = map_set rename a.states; + starting_states = map_set rename a.starting_states; + selecting_states = map_set rename a.selecting_states; + transitions = + map_hash + rename + (fun l -> + (List.map (fun (labels, form) -> (labels, map_form rename form)) l)) + a.transitions; + } + +let copy a = + let mapper = Hashtbl.create MED_H_SIZE in + let () = + StateSet.iter (fun q -> Hashtbl.add mapper q (State.make())) a.states + in + rename_states mapper a + + +let concat a1 a2 = + let a1 = copy a1 in + let a2 = copy a2 in + let link_phi = + StateSet.fold + (fun q phi -> Formula.(or_ (stay q) phi)) + a1.selecting_states Formula.false_ + in + Hashtbl.iter (fun q trs -> Hashtbl.add a1.transitions q trs) + a2.transitions; + StateSet.iter + (fun q -> + Hashtbl.replace a1.transitions q [(QNameSet.any, link_phi)]) + a2.starting_states; + { a1 with + states = StateSet.union a1.states a2.states; + selecting_states = a2.selecting_states; + transitions = a1.transitions; + } + +let merge a1 a2 = + let a1 = copy a1 in + let a2 = copy a2 in + { a1 with + states = StateSet.union a1.states a2.states; + selecting_states = StateSet.union a1.selecting_states a2.selecting_states; + starting_states = StateSet.union a1.starting_states a2.starting_states; + transitions = + let () = + Hashtbl.iter (fun k v -> Hashtbl.add a1.transitions k v) a2.transitions + in + a1.transitions + } + + +let link a1 a2 q link_phi = + { a1 with + states = StateSet.union a1.states a2.states; + selecting_states = StateSet.singleton q; + starting_states = StateSet.union a1.starting_states a2.starting_states; + transitions = + let () = + Hashtbl.iter (fun k v -> Hashtbl.add a1.transitions k v) a2.transitions + in + Hashtbl.add a1.transitions q [(QNameSet.any, link_phi)]; + a1.transitions + } + +let union a1 a2 = + let a1 = copy a1 in + let a2 = copy a2 in + let q = State.make () in + let link_phi = + StateSet.fold + (fun q phi -> Formula.(or_ (stay q) phi)) + (StateSet.union a1.selecting_states a2.selecting_states) + Formula.false_ + in + link a1 a2 q link_phi + +let inter a1 a2 = + let a1 = copy a1 in + let a2 = copy a2 in + let q = State.make () in + let link_phi = + StateSet.fold + (fun q phi -> Formula.(and_ (stay q) phi)) + (StateSet.union a1.selecting_states a2.selecting_states) + Formula.true_ + in + link a1 a2 q link_phi + +let neg a = + let a = copy a in + let q = State.make () in + let link_phi = + StateSet.fold + (fun q phi -> Formula.(and_ (not_(stay q)) phi)) + a.selecting_states + Formula.true_ + in + let () = Hashtbl.add a.transitions q [(QNameSet.any, link_phi)] in + let a = + { a with + selecting_states = StateSet.singleton q; + } + in + normalize_negations a; a + +let diff a1 a2 = inter a1 (neg a2) +