X-Git-Url: http://git.nguyen.vg/gitweb/?p=tatoo.git;a=blobdiff_plain;f=src%2Fauto%2Fata.ml;h=1015513f2563db0d5ebc669c5d47681c3a8f3004;hp=576941d198f0e411524d6e726d8d5f84636cd5eb;hb=ce09a30489dce8ac9e389c8c1525a34d1e02354e;hpb=a3d6ecbcea379fa51785848a5b8b53bca4e4bdd2 diff --git a/src/auto/ata.ml b/src/auto/ata.ml index 576941d..1015513 100644 --- a/src/auto/ata.ml +++ b/src/auto/ata.ml @@ -14,85 +14,132 @@ (***********************************************************************) (* - Time-stamp: + Time-stamp: *) INCLUDE "utils.ml" open Format open Utils -type move = [ `Left | `Right | `Up1 | `Up2 | `Epsilon ] -type state_ctx = { mutable left : StateSet.t; - mutable right : StateSet.t; - mutable up1 : StateSet.t; - mutable up2 : StateSet.t; - mutable epsilon : StateSet.t} +type predicate = | First_child + | Next_sibling + | Parent + | Previous_sibling + | Stay + | Is_first_child + | Is_next_sibling + | Is of (Tree.Common.NodeKind.t) + | Has_first_child + | Has_next_sibling -type pred_ = move * bool * State.t +let is_move p = match p with +| First_child | Next_sibling +| Parent | Previous_sibling | Stay -> true +| _ -> false -module Move : (Formula.PREDICATE with type data = pred_ and type ctx = state_ctx ) = + +type atom = predicate * bool * State.t + +module Atom : (Formula.ATOM with type data = atom) = struct module Node = struct - type t = move * bool * State.t + type t = atom let equal n1 n2 = n1 = n2 let hash n = Hashtbl.hash n end - type ctx = state_ctx - - let make_ctx a b c d e = - { left = a; right = b; up1 = c; up2 = d; epsilon = e } - include Hcons.Make(Node) - let _pr_buff = Buffer.create 10 - let _str_fmt = formatter_of_buffer _pr_buff - let _flush_str_fmt () = pp_print_flush _str_fmt (); - let s = Buffer.contents _pr_buff in - Buffer.clear _pr_buff; s let print ppf a = - let _ = _flush_str_fmt () in - - let m, b, s = a.node in - let dir,num = - match m with - | `Left -> Pretty.down_arrow, Pretty.subscript 1 - | `Right -> Pretty.down_arrow, Pretty.subscript 2 - | `Epsilon -> Pretty.epsilon, "" - | `Up1 -> Pretty.up_arrow, Pretty.subscript 1 - | `Up2 -> Pretty.up_arrow, Pretty.subscript 2 - in - fprintf _str_fmt "%s%s" dir num; - State.print _str_fmt s; - let str = _flush_str_fmt () in - if b then fprintf ppf "%s" str - else Pretty.pp_overline ppf str - - let neg p = - let l, b, s = p.node in - make (l, not b, s) - exception NegativeAtom of (move*State.t) - let eval ctx p = - let l, b, s = p.node in - if b then raise (NegativeAtom(l,s)); - StateSet.mem s begin - match l with - `Left -> ctx.left - | `Right -> ctx.right - | `Up1 -> ctx.up1 - | `Up2 -> ctx.up2 - | `Epsilon -> ctx.epsilon - end + let p, b, q = a.node in + if not b then fprintf ppf "%s" Pretty.lnot; + match p with + | First_child -> fprintf ppf "FC(%a)" State.print q + | Next_sibling -> fprintf ppf "NS(%a)" State.print q + | Parent -> fprintf ppf "FC%s(%a)" Pretty.inverse State.print q + | Previous_sibling -> fprintf ppf "NS%s(%a)" Pretty.inverse State.print q + | Stay -> fprintf ppf "%s(%a)" Pretty.epsilon State.print q + | Is_first_child -> fprintf ppf "FC%s?" Pretty.inverse + | Is_next_sibling -> fprintf ppf "NS%s?" Pretty.inverse + | Is k -> fprintf ppf "is-%a?" Tree.Common.NodeKind.print k + | Has_first_child -> fprintf ppf "FC?" + | Has_next_sibling -> fprintf ppf "NS?" + + let neg a = + let p, b, q = a.node in + make (p, not b, q) + + +end + +module SFormula = +struct + include Formula.Make(Atom) + open Tree.Common.NodeKind + let mk_atom a b c = atom_ (Atom.make (a,b,c)) + let mk_kind k = mk_atom (Is k) true State.dummy + let has_first_child = + (mk_atom Has_first_child true State.dummy) + + let has_next_sibling = + (mk_atom Has_next_sibling true State.dummy) + + let is_first_child = + (mk_atom Is_first_child true State.dummy) + + let is_next_sibling = + (mk_atom Is_next_sibling true State.dummy) + + let is_attribute = + (mk_atom (Is Attribute) true State.dummy) + + let is_element = + (mk_atom (Is Element) true State.dummy) + + let is_processing_instruction = + (mk_atom (Is ProcessingInstruction) true State.dummy) + + let is_comment = + (mk_atom (Is Comment) true State.dummy) + + let first_child q = + and_ + (mk_atom First_child true q) + has_first_child + + let next_sibling q = + and_ + (mk_atom Next_sibling true q) + has_next_sibling + + let parent q = + and_ + (mk_atom Parent true q) + is_first_child + + let previous_sibling q = + and_ + (mk_atom Previous_sibling true q) + is_next_sibling + + let stay q = + (mk_atom Stay true q) + + let get_states phi = + fold (fun phi acc -> + match expr phi with + | Formula.Atom a -> let _, _, q = Atom.node a in + if q != State.dummy then StateSet.add q acc else acc + | _ -> acc + ) phi StateSet.empty + end -module SFormula = Formula.Make(Move) type t = { id : Uid.t; mutable states : StateSet.t; -(* mutable top_states : StateSet.t; - mutable bottom_states: StateSet.t; *) mutable selection_states: StateSet.t; transitions: (State.t, (QNameSet.t*SFormula.t) list) Hashtbl.t; } @@ -101,13 +148,40 @@ let next = Uid.make_maker () let create () = { id = next (); states = StateSet.empty; -(* top_states = StateSet.empty; - bottom_states = StateSet.empty; *) selection_states = StateSet.empty; transitions = Hashtbl.create 17; } +module Transition = Hcons.Make (struct + type t = State.t * QNameSet.t * SFormula.t + let equal (a, b, c) (d, e, f) = + a == d && b == e && c == f + let hash (a, b, c) = + HASHINT4 (PRIME1, a, ((QNameSet.uid b) :> int), ((SFormula.uid c) :> int)) +end) + +module TransList : sig + include Hlist.S with type elt = Transition.t + val print : Format.formatter -> t -> unit +end = + struct + include Hlist.Make(Transition) + let print ppf l = + iter (fun t -> + let q, lab, f = Transition.node t in + fprintf ppf "%a, %a -> %a
" State.print q QNameSet.print lab SFormula.print f) l + end + +let get_trans a states tag = + StateSet.fold (fun q acc0 -> + try + let trs = Hashtbl.find a.transitions q in + List.fold_left (fun acc1 (labs, phi) -> + if QNameSet.mem tag labs then TransList.cons (Transition.make (q, labs, phi)) acc1 else acc1) acc0 trs + with Not_found -> acc0 + ) states TransList.nil + (* [add_trans a q labels f] adds a transition [(q,labels) -> f] to the automaton [a] but ensures that transitions remains pairwise disjoint @@ -203,11 +277,32 @@ let complete_transitions a = Hashtbl.replace a.transitions q nqtrans ) a.states +let cleanup_states a = + let memo = ref StateSet.empty in + let rec loop q = + if not (StateSet.mem q !memo) then begin + memo := StateSet.add q !memo; + let trs = try Hashtbl.find a.transitions q with Not_found -> [] in + List.iter (fun (_, phi) -> + StateSet.iter loop (SFormula.get_states phi)) trs + end + in + StateSet.iter loop a.selection_states; + let unused = StateSet.diff a.states !memo in + eprintf "Unused states %a\n%!" StateSet.print unused; + StateSet.iter (fun q -> Hashtbl.remove a.transitions q) unused; + a.states <- !memo + (* [normalize_negations a] removes negative atoms in the formula complementing the sub-automaton in the negative states. [TODO check the meaning of negative upward arrows] *) -let normalize_negations a = + +let normalize_negations auto = + eprintf "Automaton before normalize_trans:\n"; + print err_formatter auto; + eprintf "--------------------\n%!"; + let memo_state = Hashtbl.create 17 in let todo = Queue.create () in let rec flip b f = @@ -216,17 +311,19 @@ let normalize_negations a = | Formula.Or(f1, f2) -> (if b then SFormula.or_ else SFormula.and_)(flip b f1) (flip b f2) | Formula.And(f1, f2) -> (if b then SFormula.and_ else SFormula.or_)(flip b f1) (flip b f2) | Formula.Atom(a) -> begin - let l, b', q = Move.node a in - if b == b' then begin + let l, b', q = Atom.node a in + if q == State.dummy then if b then f else SFormula.not_ f + else + if b == b' then begin (* a appears positively, either no negation or double negation *) - if not (Hashtbl.mem memo_state (q,b)) then Queue.add (q,true) todo; - SFormula.atom_ (Move.make (l, true, q)) - end else begin + if not (Hashtbl.mem memo_state (q,b)) then Queue.add (q,true) todo; + SFormula.atom_ (Atom.make (l, true, q)) + end else begin (* need to reverse the atom either we have a positive state deep below a negation or we have a negative state in a positive formula b' = sign of the state - b = sign of the containing formula + b = sign of the enclosing formula *) let not_q = try @@ -236,14 +333,17 @@ let normalize_negations a = Not_found -> (* create a new state and add it to the todo queue *) let nq = State.make () in + auto.states <- StateSet.add nq auto.states; Hashtbl.add memo_state (q, false) nq; Queue.add (q, false) todo; nq in - SFormula.atom_ (Move.make (l, true, not_q)) + SFormula.atom_ (Atom.make (l, true, not_q)) end end in - StateSet.iter (fun q -> Queue.add (q, true) todo) a.selection_states; + (* states that are not reachable from a selection stat are not interesting *) + StateSet.iter (fun q -> Queue.add (q, true) todo) auto.selection_states; + while not (Queue.is_empty todo) do let (q, b) as key = Queue.pop todo in let q' = @@ -251,10 +351,17 @@ let normalize_negations a = Hashtbl.find memo_state key with Not_found -> - let nq = if b then q else State.make () in + let nq = if b then q else + let nq = State.make () in + auto.states <- StateSet.add nq auto.states; + nq + in Hashtbl.add memo_state key nq; nq in - let trans = Hashtbl.find a.transitions q in + let trans = Hashtbl.find auto.transitions q in let trans' = List.map (fun (lab, f) -> lab, flip b f) trans in - Hashtbl.replace a.transitions q' trans' - done + Hashtbl.replace auto.transitions q' trans'; + done; + cleanup_states auto + +