X-Git-Url: http://git.nguyen.vg/gitweb/?p=tatoo.git;a=blobdiff_plain;f=src%2Fauto%2Fata.ml;h=ba2f55f9056136a8c1839dfc50fa177d633c8b4b;hp=275d6577600c9eafa3fc4bb9245aaad908b01217;hb=aace0fdd9c24437ad8ecb03a0cc4e70db45b6fc9;hpb=249bd234500a64919cf00f4a59ab4927a068d689 diff --git a/src/auto/ata.ml b/src/auto/ata.ml index 275d657..ba2f55f 100644 --- a/src/auto/ata.ml +++ b/src/auto/ata.ml @@ -14,128 +14,292 @@ (***********************************************************************) (* - Time-stamp: + Time-stamp: *) INCLUDE "utils.ml" open Format open Utils -type move = [ `Left | `Right | `Up1 | `Up2 | `Epsilon |`Is1 |`Is2 ] -type state_ctx = { mutable left : StateSet.t; - mutable right : StateSet.t; - mutable up1 : StateSet.t; - mutable up2 : StateSet.t; - mutable epsilon : StateSet.t; - mutable is_left : bool; - mutable is_root : bool} - -type pred_ = move * bool * State.t -let make_ctx a b c d e f g = - { left = a; right = b; up1 = c; up2 = d; epsilon = e; is_left = f; is_root = g } - -let print_ctx fmt c = fprintf fmt "{ left : %a; right : %a; up1: %a ; up2 : %a; epsilon : %a ; is_left : %b; is_root : %b }" - StateSet.print c.left StateSet.print c.right StateSet.print c.up1 StateSet.print c.up2 - StateSet.print c.epsilon - c.is_left c.is_root - -module Move : (Formula.PREDICATE with type data = pred_ and type ctx = state_ctx ) = +type predicate = | First_child + | Next_sibling + | Parent + | Previous_sibling + | Stay + | Is_first_child + | Is_next_sibling + | Is of (Tree.Common.NodeKind.t) + | Has_first_child + | Has_next_sibling + +let is_move p = match p with +| First_child | Next_sibling +| Parent | Previous_sibling | Stay -> true +| _ -> false + + +type atom = predicate * bool * State.t + +module Atom : (Formula.ATOM with type data = atom) = struct module Node = struct - type t = move * bool * State.t + type t = atom let equal n1 n2 = n1 = n2 let hash n = Hashtbl.hash n end - type ctx = state_ctx - - include Hcons.Make(Node) - let _pr_buff = Buffer.create 10 - let _str_fmt = formatter_of_buffer _pr_buff - let _flush_str_fmt () = pp_print_flush _str_fmt (); - let s = Buffer.contents _pr_buff in - Buffer.clear _pr_buff; s let print ppf a = - let _ = _flush_str_fmt () in - - let m, b, s = a.node in - let dir,num = - match m with - | `Left -> Pretty.down_arrow, Pretty.subscript 1 - | `Right -> Pretty.down_arrow, Pretty.subscript 2 - | `Epsilon -> Pretty.epsilon, "" - | `Up1 -> Pretty.up_arrow, Pretty.subscript 1 - | `Up2 -> Pretty.up_arrow, Pretty.subscript 2 - | `Is1 -> "?", Pretty.subscript 1 - | `Is2 -> "?", Pretty.subscript 2 - in - fprintf _str_fmt "%s%s" dir num; - if s != State.dummy then State.print _str_fmt s; - let str = _flush_str_fmt () in - fprintf ppf "%s%s" (if b then "" else Pretty.lnot) str - let neg p = - let l, b, s = p.node in - make (l, not b, s) - - exception NegativeAtom of (move*State.t) - - let eval ctx p = - let l, b, s = p.node in - if s == State.dummy then - let dir = - match l with - | `Is1 -> ctx.is_left - | _ -> not ctx.is_left - in - let res = dir && not ctx.is_root in - res && b || (not (b || res)) - else begin - if not b then raise (NegativeAtom(l,s)); - StateSet.mem s begin - match l with - `Left -> ctx.left - | `Right -> ctx.right - | `Up1 -> ctx.up1 - | `Up2 -> ctx.up2 - | `Epsilon -> ctx.epsilon - | _ -> StateSet.empty - end - end + let p, b, q = a.node in + if not b then fprintf ppf "%s" Pretty.lnot; + match p with + | First_child -> fprintf ppf "FC(%a)" State.print q + | Next_sibling -> fprintf ppf "NS(%a)" State.print q + | Parent -> fprintf ppf "FC%s(%a)" Pretty.inverse State.print q + | Previous_sibling -> fprintf ppf "NS%s(%a)" Pretty.inverse State.print q + | Stay -> fprintf ppf "%s(%a)" Pretty.epsilon State.print q + | Is_first_child -> fprintf ppf "FC%s?" Pretty.inverse + | Is_next_sibling -> fprintf ppf "NS%s?" Pretty.inverse + | Is k -> fprintf ppf "is-%a?" Tree.Common.NodeKind.print k + | Has_first_child -> fprintf ppf "FC?" + | Has_next_sibling -> fprintf ppf "NS?" + + let neg a = + let p, b, q = a.node in + make (p, not b, q) + + +end + +module SFormula = +struct + include Formula.Make(Atom) + open Tree.Common.NodeKind + let mk_atom a b c = atom_ (Atom.make (a,b,c)) + let mk_kind k = mk_atom (Is k) true State.dummy + let has_first_child = + (mk_atom Has_first_child true State.dummy) + + let has_next_sibling = + (mk_atom Has_next_sibling true State.dummy) + + let is_first_child = + (mk_atom Is_first_child true State.dummy) + + let is_next_sibling = + (mk_atom Is_next_sibling true State.dummy) + + let is_attribute = + (mk_atom (Is Attribute) true State.dummy) + + let is_element = + (mk_atom (Is Element) true State.dummy) + + let is_processing_instruction = + (mk_atom (Is ProcessingInstruction) true State.dummy) + + let is_comment = + (mk_atom (Is Comment) true State.dummy) + + let first_child q = + and_ + (mk_atom First_child true q) + has_first_child + + let next_sibling q = + and_ + (mk_atom Next_sibling true q) + has_next_sibling + + let parent q = + and_ + (mk_atom Parent true q) + is_first_child + + let previous_sibling q = + and_ + (mk_atom Previous_sibling true q) + is_next_sibling + + let stay q = + (mk_atom Stay true q) + + let get_states phi = + fold (fun phi acc -> + match expr phi with + | Formula.Atom a -> let _, _, q = Atom.node a in + if q != State.dummy then StateSet.add q acc else acc + | _ -> acc + ) phi StateSet.empty + end -module SFormula = Formula.Make(Move) + +module Transition = Hcons.Make (struct + type t = State.t * QNameSet.t * SFormula.t + let equal (a, b, c) (d, e, f) = + a == d && b == e && c == f + let hash (a, b, c) = + HASHINT4 (PRIME1, a, ((QNameSet.uid b) :> int), ((SFormula.uid c) :> int)) +end) + + +module TransList : sig + include Hlist.S with type elt = Transition.t + val print : Format.formatter -> ?sep:string -> t -> unit +end = + struct + include Hlist.Make(Transition) + let print ppf ?(sep="\n") l = + iter (fun t -> + let q, lab, f = Transition.node t in + fprintf ppf "%a, %a -> %a%s" State.print q QNameSet.print lab SFormula.print f sep) l + end + + type t = { id : Uid.t; mutable states : StateSet.t; - mutable top_states : StateSet.t; - mutable bottom_states: StateSet.t; mutable selection_states: StateSet.t; transitions: (State.t, (QNameSet.t*SFormula.t) list) Hashtbl.t; + mutable cache2 : TransList.t Cache.N2.t; + mutable cache6 : (TransList.t*StateSet.t) Cache.N6.t; } let next = Uid.make_maker () -let create () = { id = next (); - states = StateSet.empty; - top_states = StateSet.empty; - bottom_states = StateSet.empty; - selection_states = StateSet.empty; - transitions = Hashtbl.create 17; - } +let dummy2 = TransList.cons + (Transition.make (State.dummy,QNameSet.empty, SFormula.false_)) + TransList.nil + +let dummy6 = (dummy2, StateSet.empty) + + +let create s ss = + let auto = { id = next (); + states = s; + selection_states = ss; + transitions = Hashtbl.create 17; + cache2 = Cache.N2.create dummy2; + cache6 = Cache.N6.create dummy6; + } + in + at_exit (fun () -> + let n6 = ref 0 in + let n2 = ref 0 in + Cache.N2.iteri (fun _ _ _ b -> if b then incr n2) auto.cache2; + Cache.N6.iteri (fun _ _ _ _ _ _ _ b -> if b then incr n6) auto.cache6; + Format.eprintf "INFO: automaton %i, cache2: %i entries, cache6: %i entries\n%!" + (auto.id :> int) !n2 !n6 + ); + auto +let reset a = + a.cache2 <- Cache.N2.create dummy2; + a.cache6 <- Cache.N6.create dummy6 -let get_trans a states tag = + +let get_trans_aux a tag states = StateSet.fold (fun q acc0 -> try let trs = Hashtbl.find a.transitions q in List.fold_left (fun acc1 (labs, phi) -> - if QNameSet.mem tag labs then (q,phi)::acc1 else acc1) acc0 trs + if QNameSet.mem tag labs then TransList.cons (Transition.make (q, labs, phi)) acc1 else acc1) acc0 trs with Not_found -> acc0 - ) states [] + ) states TransList.nil + + +let get_trans a tag states = + let trs = + Cache.N2.find a.cache2 + (tag.QName.id :> int) (states.StateSet.id :> int) + in + if trs == dummy2 then + let trs = get_trans_aux a tag states in + (Cache.N2.add + a.cache2 + (tag.QName.id :> int) + (states.StateSet.id :> int) trs; trs) + else trs + + + +let eval_form phi fcs nss ps ss is_left is_right has_left has_right kind = + let rec loop phi = + begin match SFormula.expr phi with + Formula.True -> true + | Formula.False -> false + | Formula.Atom a -> + let p, b, q = Atom.node a in + let pos = + match p with + | First_child -> StateSet.mem q fcs + | Next_sibling -> StateSet.mem q nss + | Parent | Previous_sibling -> StateSet.mem q ps + | Stay -> StateSet.mem q ss + | Is_first_child -> is_left + | Is_next_sibling -> is_right + | Is k -> k == kind + | Has_first_child -> has_left + | Has_next_sibling -> has_right + in + if is_move p && (not b) then + eprintf "Warning: Invalid negative atom %a" Atom.print a; + b == pos + | Formula.And(phi1, phi2) -> loop phi1 && loop phi2 + | Formula.Or (phi1, phi2) -> loop phi1 || loop phi2 + end + in + loop phi + +let int_of_conf is_left is_right has_left has_right kind = + ((Obj.magic kind) lsl 4) lor + ((Obj.magic is_left) lsl 3) lor + ((Obj.magic is_right) lsl 2) lor + ((Obj.magic has_left) lsl 1) lor + (Obj.magic has_right) + +let eval_trans auto ltrs fcs nss ps ss is_left is_right has_left has_right kind = + let i = int_of_conf is_left is_right has_left has_right kind + and k = (fcs.StateSet.id :> int) + and l = (nss.StateSet.id :> int) + and m = (ps.StateSet.id :> int) + in + + let rec loop ltrs ss = + let j = (ltrs.TransList.id :> int) + and n = (ss.StateSet.id :> int) in + let (new_ltrs, new_ss) as res = + let res = Cache.N6.find auto.cache6 i j k l m n in + if res == dummy6 then + let res = + TransList.fold (fun trs (acct, accs) -> + let q, _, phi = Transition.node trs in + if StateSet.mem q accs then (acct, accs) else + if eval_form + phi fcs nss ps accs + is_left is_right has_left has_right kind + then + (acct, StateSet.add q accs) + else + (TransList.cons trs acct, accs) + ) ltrs (TransList.nil, ss) + in + Cache.N6.add auto.cache6 i j k l m n res; res + else + res + in + if new_ss == ss then res else + loop new_ltrs new_ss + in + loop ltrs ss + + + + (* [add_trans a q labels f] adds a transition [(q,labels) -> f] to the @@ -175,14 +339,10 @@ let print fmt a = fprintf fmt "\nInternal UID: %i@\n\ States: %a@\n\ - Top states: %a@\n\ - Bottom states: %a@\n\ Selection states: %a@\n\ Alternating transitions:@\n" (a.id :> int) StateSet.print a.states - StateSet.print a.top_states - StateSet.print a.bottom_states StateSet.print a.selection_states; let trs = Hashtbl.fold @@ -236,11 +396,32 @@ let complete_transitions a = Hashtbl.replace a.transitions q nqtrans ) a.states +let cleanup_states a = + let memo = ref StateSet.empty in + let rec loop q = + if not (StateSet.mem q !memo) then begin + memo := StateSet.add q !memo; + let trs = try Hashtbl.find a.transitions q with Not_found -> [] in + List.iter (fun (_, phi) -> + StateSet.iter loop (SFormula.get_states phi)) trs + end + in + StateSet.iter loop a.selection_states; + let unused = StateSet.diff a.states !memo in + eprintf "Unused states %a\n%!" StateSet.print unused; + StateSet.iter (fun q -> Hashtbl.remove a.transitions q) unused; + a.states <- !memo + (* [normalize_negations a] removes negative atoms in the formula complementing the sub-automaton in the negative states. [TODO check the meaning of negative upward arrows] *) + let normalize_negations auto = + eprintf "Automaton before normalize_trans:\n"; + print err_formatter auto; + eprintf "--------------------\n%!"; + let memo_state = Hashtbl.create 17 in let todo = Queue.create () in let rec flip b f = @@ -249,13 +430,13 @@ let normalize_negations auto = | Formula.Or(f1, f2) -> (if b then SFormula.or_ else SFormula.and_)(flip b f1) (flip b f2) | Formula.And(f1, f2) -> (if b then SFormula.and_ else SFormula.or_)(flip b f1) (flip b f2) | Formula.Atom(a) -> begin - let l, b', q = Move.node a in + let l, b', q = Atom.node a in if q == State.dummy then if b then f else SFormula.not_ f else if b == b' then begin (* a appears positively, either no negation or double negation *) if not (Hashtbl.mem memo_state (q,b)) then Queue.add (q,true) todo; - SFormula.atom_ (Move.make (l, true, q)) + SFormula.atom_ (Atom.make (l, true, q)) end else begin (* need to reverse the atom either we have a positive state deep below a negation @@ -272,14 +453,10 @@ let normalize_negations auto = (* create a new state and add it to the todo queue *) let nq = State.make () in auto.states <- StateSet.add nq auto.states; -(* if not (StateSet.mem q auto.bottom_states) then - auto.bottom_states <- StateSet.add nq auto.bottom_states; - if not (StateSet.mem q auto.top_states) then - auto.top_states <- StateSet.add nq auto.top_states; *) Hashtbl.add memo_state (q, false) nq; Queue.add (q, false) todo; nq in - SFormula.atom_ (Move.make (l, true, not_q)) + SFormula.atom_ (Atom.make (l, true, not_q)) end end in @@ -296,15 +473,14 @@ let normalize_negations auto = let nq = if b then q else let nq = State.make () in auto.states <- StateSet.add nq auto.states; -(* if not (StateSet.mem q auto.bottom_states) then - auto.bottom_states <- StateSet.add nq auto.bottom_states; - if not (StateSet.mem q auto.top_states) then - auto.top_states <- StateSet.add nq auto.top_states; *) nq in Hashtbl.add memo_state key nq; nq in let trans = Hashtbl.find auto.transitions q in let trans' = List.map (fun (lab, f) -> lab, flip b f) trans in - Hashtbl.replace auto.transitions q' trans' - done + Hashtbl.replace auto.transitions q' trans'; + done; + cleanup_states auto + +