X-Git-Url: http://git.nguyen.vg/gitweb/?p=tatoo.git;a=blobdiff_plain;f=src%2Fcompil.ml;h=574485e00285cfc80fe5c4ecbb32fa9315155298;hp=b722656fc07dc7bb63e4e58705f462bd4a7a610a;hb=09cd270a1d9d1405795aa3d220267bc3141dd0bd;hpb=a3db3281c936a50107f9e73ec06c3a6171d61dbd diff --git a/src/compil.ml b/src/compil.ml index b722656..574485e 100644 --- a/src/compil.ml +++ b/src/compil.ml @@ -2,8 +2,8 @@ (* *) (* TAToo *) (* *) -(* Lucca Hirschi, ? *) -(* ? *) +(* Lucca Hirschi, LRI UMR8623 *) +(* Université Paris-Sud & CNRS *) (* *) (* Copyright 2010-2012 Université Paris-Sud and Centre National de la *) (* Recherche Scientifique. All rights reserved. This file is *) @@ -22,26 +22,30 @@ exception Not_core_XPath let pr_er = Format.err_formatter let trans query = - let asta = Asta.empty in (* Buidling of the ASTA step by step with a special case for the last step. Then add a top most state. Each function modifies asta. *) + let asta = Asta.empty in + (* builds asta from the bottom of the query *) let rec trans = function | [s] -> trans_last s | s :: tl -> trans tl; trans_step s | [] -> () - - and trans_init () = (* add THE top most state *) + + (* Add THE top most state for top-level query (done in the end) *) + and trans_init () = let top_st = Asta.new_state () in let or_top = - List.fold_left (fun acc x -> ((`Left *+ x) +| acc)) + List.fold_left (fun acc x -> ((`Left *+ x) +| acc)) (Formula.false_) (Asta.top_states asta) in Asta.add_quer asta top_st; Asta.init_top asta; Asta.add_top asta top_st; - Asta.add_tr asta (top_st, Asta.any_label, or_top) - - and trans_last (ax,test,pred) = (* a selecting state is needed *) + Asta.add_bot asta top_st; (* for trees which are leaves *) + Asta.add_tr asta (top_st, Asta.any_label, or_top) true + + (* A selecting state is needed *) + and trans_last (ax,test,pred) = let fo_p = trans_pr pred in let q,q' = Asta.new_state(), Asta.new_state() in Asta.add_selec asta q'; @@ -49,53 +53,90 @@ let trans query = Asta.add_quer asta q'; Asta.add_top asta q; Asta.add_top asta q'; - Asta.add_bot asta q; - Asta.add_bot asta q'; + Asta.add_bot asta q; (* q' \notin B !! *) let Simple lab = test in let tr_selec = (q', lab, fo_p) and tr_q = (q, Asta.any_label, form_propa_selec q q' ax) in - Asta.add_tr asta tr_selec; - Asta.add_tr asta tr_q - + Asta.add_tr asta tr_selec true; + Asta.add_tr asta tr_q true + + (* Add a new state and its transitions for the step *) and trans_step (ax,test,pred) = let fo_p = trans_pr pred and q = Asta.new_state() in let Simple label = test and form_next = (fo_p) *& (* (\/ top_next) /\ predicat *) (List.fold_left (fun acc x -> (`Left *+ x ) +| acc) - Formula.false_ (Asta.top_states asta)) in + Formula.false_ (Asta.top_states asta)) in let tr_next = (q, label, form_next) and tr_propa = (q, Asta.any_label, form_propa q ax) in Asta.add_quer asta q; Asta.add_top asta q; Asta.add_bot asta q; - Asta.add_tr asta tr_next; - Asta.add_tr asta tr_propa; + Asta.add_tr asta tr_next true; + Asta.add_tr asta tr_propa true; Asta.init_top asta; Asta.add_top asta q - - and trans_pr = function (* either we apply De Morgan rules - in xPath:parse or here *) + + (* Translating of predicates. Either we apply De Morgan rules + in xPath.parse or here *) + and trans_pr = function | Expr True -> Formula.true_ | Expr False -> Formula.false_ | Or (p_1,p_2) -> trans_pr(p_1) +| trans_pr(p_2) | And (p_1,p_2) -> trans_pr(p_1) *& trans_pr(p_2) - | Not (Expr Path q) -> Formula.true_ (* todo *) - | Expr Path q -> Formula.true_ (* todo *) + | Not (Expr Path q) -> (trans_pr_path false q) + | Expr Path q -> (trans_pr_path true q) | x -> print_predicate pr_er x; raise Not_core_XPath - + + (* Builds asta for predicate and gives the formula which must be satsified *) + and trans_pr_path posi = function + | Relative [] -> if posi then Formula.true_ else Formula.false_ + | Relative steps -> List.fold_left + (fun acc x -> if posi then (`Left *+ x) +| acc else (`Left *- x) +| acc) + Formula.false_ (trans_pr_step_l steps) + | AbsoluteDoS steps as x -> print pr_er x; raise Not_core_XPath + | Absolute steps as x -> print pr_er x; raise Not_core_XPath + + (* Builds asta for a predicate query and give the formula *) + and trans_pr_step_l = function + | [step] -> trans_pr_step [] step + | step :: tl -> let list_top = trans_pr_step_l tl in + trans_pr_step list_top step + | [] -> failwith "Can not happened! 1" + + (* Add a step on the top of a list of states in a predicate *) + and trans_pr_step list (ax,test,pred) = + let form_next = + if list = [] + then trans_pr pred + else (trans_pr pred) *& + (List.fold_left (fun acc x -> (`Left *+ x) +| acc) + Formula.false_ list) + and q = Asta.new_state() + and Simple label = test in + let tr_next = (q,label, form_next) + and tr_propa = (q, Asta.any_label, form_propa q ax) in + Asta.add_reco asta q; + Asta.add_tr asta tr_next false; + Asta.add_tr asta tr_propa false; + [q] (* always one element here, but more with self + axis *) + (* Gives the propagation formula *) and form_propa q = function | Child -> `Right *+ q | Descendant -> (`Left *+ q +| `Right *+ q) | x -> print_axis pr_er x; raise Not_core_XPath + (* The same with a selecting state *) and form_propa_selec q q' = function | Child -> `Right *+ q +| `Right *+ q' | Descendant -> (`Left *+ q +| `Right *+ q) +| (`Left *+ q' +| `Right *+ q') | x -> print_axis pr_er x; raise Not_core_XPath in - match query with + (* Match the top-level query *) + match query with | Absolute steps -> trans steps; trans_init(); asta | AbsoluteDoS steps as x -> print pr_er x; raise Not_core_XPath | Relative steps as x -> print pr_er x; raise Not_core_XPath