X-Git-Url: http://git.nguyen.vg/gitweb/?p=tatoo.git;a=blobdiff_plain;f=src%2Frun.ml;h=0d0e7e95cb8d3f8ec60e106eab68e1097c9d48fa;hp=ca162a1f7a7602f855d52418c37724729162f413;hb=84751fead39221a8e01d20a4692faf0b63a7c996;hpb=a8f210b6229055c3c5101034d359c61476d8408a diff --git a/src/run.ml b/src/run.ml index ca162a1..0d0e7e9 100644 --- a/src/run.ml +++ b/src/run.ml @@ -14,471 +14,428 @@ (***********************************************************************) INCLUDE "utils.ml" +INCLUDE "debug.ml" + open Format open Misc +open Bigarray + +type stats = { mutable pass : int; + tree_size : int; + mutable fetch_trans_cache_access : int; + mutable fetch_trans_cache_miss : int; + mutable eval_trans_cache_access : int; + mutable eval_trans_cache_miss : int; + mutable nodes_per_run : int list; + } + +module NodeSummary = +struct + (* Pack into an integer the result of the is_* and has_ predicates + for a given node *) + type t = int + let dummy = -1 + (* + ...44443210 + ...4444 -> kind + 3 -> has_right + 2 -> has_left + 1 -> is_right + 0 -> is_left + *) + let is_left (s : t) : bool = + s land 1 != 0 + + let is_right (s : t) : bool = + s land 0b10 != 0 + + let has_left (s : t) : bool = + s land 0b100 != 0 + + let has_right (s : t) : bool = + s land 0b1000 != 0 + + let kind (s : t) : Tree.NodeKind.t = + Obj.magic (s lsr 4) + + let make is_left is_right has_left has_right kind = + (int_of_bool is_left) lor + ((int_of_bool is_right) lsl 1) lor + ((int_of_bool has_left) lsl 2) lor + ((int_of_bool has_right) lsl 3) lor + ((Obj.magic kind) lsl 4) +end + +let dummy_set = StateSet.singleton State.dummy_state -module Make (T : Tree.S) = - struct - - module NodeSummary = - struct - (* Pack into an integer the result of the is_* and has_ predicates - for a given node *) - type t = int - let dummy = -1 - (* - 4444444444443210 - 4 -> kind - 3 -> is_left - 2 -> is_right - 1 -> has_left - 0 -> has_right - *) - - let has_right (s : t) : bool = - Obj.magic (s land 1) - - let has_left (s : t) : bool = - Obj.magic ((s lsr 1) land 1) - - let is_right (s : t) : bool = - Obj.magic ((s lsr 2) land 1) - - let is_left (s : t) : bool = - Obj.magic ((s lsr 3) land 1) - - let kind (s : t) : Tree.NodeKind.t = - Obj.magic (s lsr 4) - - let make is_left is_right has_left has_right kind = - ((Obj.magic kind) lsl 4) lor - ((int_of_bool is_left) lsl 3) lor - ((int_of_bool is_right) lsl 2) lor - ((int_of_bool has_left) lsl 1) lor - (int_of_bool has_right) - - end - - type node_status = { - sat : StateSet.t; (* States that are satisfied at the current node *) - todo : StateSet.t; (* States that remain to be proven *) - (* For every node_status and automaton a: - a.states - (sat U todo) = unsat *) - summary : NodeSummary.t; (* Summary of the shape of the node *) - } -(* Describe what is kept at each node for a run *) - - module NodeStatus = - struct - include Hcons.Make(struct - type t = node_status - let equal c d = - c == d || - c.sat == d.sat && - c.todo == d.todo && - c.summary == d.summary - - let hash c = - HASHINT3((c.sat.StateSet.id :> int), - (c.todo.StateSet.id :> int), - c.summary) - end - ) - let print ppf s = - fprintf ppf - "{ sat: %a; todo: %a; summary: _ }" - StateSet.print s.node.sat - StateSet.print s.node.todo - end - - let dummy_status = - NodeStatus.make { sat = StateSet.empty; - todo = StateSet.empty; - summary = NodeSummary.dummy; - } - - - type run = { - tree : T.t ; - (* The argument of the run *) - auto : Ata.t; - (* The automaton to be run *) - status : NodeStatus.t array; - (* A mapping from node preorders to NodeStatus *) - unstable : Bitvector.t; - (* A bitvector remembering whether a subtree is stable *) - mutable redo : bool; - (* A boolean indicating whether the run is incomplete *) - mutable pass : int; - (* The number of times this run was updated *) - mutable cache2 : Ata.Formula.t Cache.N2.t; - (* A cache from states * label to list of transitions *) - mutable cache5 : NodeStatus.t Cache.N5.t; - } - let pass r = r.pass - let stable r = not r.redo - let auto r = r.auto - let tree r = r.tree + IFDEF HTMLTRACE + THEN +type sat_array = StateSet.t array list + DEFINE IFHTML(a,b) = (a) + ELSE +type sat_array = StateSet.t array + DEFINE IFHTML(a,b) = (b) + END - let dummy_form = Ata.Formula.stay State.dummy +let unsafe_get a i = + if i < 0 then StateSet.empty else + Array.unsafe_get (IFHTML(List.hd a, a)) i - let make auto tree = - let len = T.size tree in - { - tree = tree; - auto = auto; - status = Array.create len dummy_status; - unstable = Bitvector.create ~init:true len; - redo = true; - pass = 0; - cache2 = Cache.N2.create dummy_form; - cache5 = Cache.N5.create dummy_status; - } +let unsafe_set a i v old_v = + if v != old_v then + Array.unsafe_set (IFHTML(List.hd a, a)) i v - let get_status a i = - if i < 0 then dummy_status else Array.get a i +type 'a run = { + tree : 'a ; + (* The argument of the run *) + auto : Ata.t; + (* The automaton to be run *) + mutable sat: sat_array; + (* A mapping from node preorders to states satisfied at that node *) + mutable pass : int; + (* Number of run we have performed *) + mutable fetch_trans_cache : Ata.Formula.t Cache.N2.t; + (* A cache from states * label to list of transitions *) + mutable td_cache : StateSet.t Cache.N6.t; + mutable bu_cache : StateSet.t Cache.N6.t; + (* Two 6-way caches used during the top-down and bottom-up phase + label * self-set * fc-set * ns-set * parent-set * node-shape -> self-set + *) + (*node_summaries: (int, int16_unsigned_elt, c_layout) Array1.t; *) + node_summaries: Bytes.t; + stats : stats; +} + +let dummy_form = Ata.Formula.stay State.dummy_state + +let get_form run tag (q : State.t) = + let auto = run.auto in + let fetch_trans_cache = run.fetch_trans_cache in + let stats = run.stats in + let phi = + stats.fetch_trans_cache_access <- stats.fetch_trans_cache_access + 1; + Cache.N2.find fetch_trans_cache (tag.QName.id :> int) (q :> int) + in + if phi == dummy_form then + let phi = Ata.get_form auto tag q in + let () = + stats.fetch_trans_cache_miss <- stats.fetch_trans_cache_miss + 1; + Cache.N2.add + fetch_trans_cache + (tag.QName.id :> int) + (q :> int) phi + in phi + else + phi + + + +let eval_form phi fcs nss ps ss summary = + let open Ata in + let rec loop phi = + begin match Formula.expr phi with + | Boolean.False -> false + | Boolean.True -> true + | Boolean.Atom (a, b) -> + begin + let open NodeSummary in + match a.Atom.node with + | Move (m, q) -> + b && StateSet.mem q ( + match m with + `First_child -> fcs + | `Next_sibling -> nss + | `Parent | `Previous_sibling -> ps + | `Stay -> ss + ) + | Is_first_child -> b == is_left summary + | Is_next_sibling -> b == is_right summary + | Is k -> b == (k == kind summary) + | Has_first_child -> b == has_left summary + | Has_next_sibling -> b == has_right summary + end + | Boolean.And(phi1, phi2) -> loop phi1 && loop phi2 + | Boolean.Or (phi1, phi2) -> loop phi1 || loop phi2 + end + in + loop phi - let unsafe_get_status a i = - if i < 0 then dummy_status else Array.unsafe_get a i -IFDEF HTMLTRACE - THEN -DEFINE IFTRACE(e) = (e) - ELSE -DEFINE IFTRACE(e) = () -END - - let html tree node i config msg = - let config = config.NodeStatus.node in - Html.trace ~msg:msg - (T.preorder tree node) i - config.todo - config.sat - - - - let debug msg tree node i config = - let config = config.NodeStatus.node in - eprintf - "DEBUG:%s node: %i\nsat: %a\ntodo: %a\nround: %i\n" - msg - (T.preorder tree node) - StateSet.print config.sat - StateSet.print config.todo - i - - let get_form cache2 auto tag q = - let phi = - Cache.N2.find cache2 (tag.QName.id :> int) (q :> int) - in - if phi == dummy_form then - let phi = Ata.get_form auto tag q in - let () = - Cache.N2.add - cache2 - (tag.QName.id :> int) - (q :> int) phi - in phi - else phi - - type trivalent = False | True | Unknown - let of_bool = function false -> False | true -> True - let or_ t1 t2 = - match t1 with - False -> t2 - | True -> True - | Unknown -> if t2 == True then True else Unknown - - let and_ t1 t2 = - match t1 with - False -> False - | True -> t2 - | Unknown -> if t2 == False then False else Unknown - - (* Define as macros to get lazyness *) -DEFINE OR_(t1,t2) = - let __t1 = (t1) in - match t1 with - False -> (t2) - | True -> True - | Unknown -> if (t2) == True then True else Unknown - -DEFINE AND_(t1,t2) = - let __t1 = (t1) in - match t1 with - False -> False - | True -> (t2) - | Unknown -> if (t2) == False then False else Unknown - - - let eval_form phi fcs nss ps ss summary = - let open Ata in - let rec loop phi = - begin match Formula.expr phi with - | Boolean.False -> False - | Boolean.True -> True - | Boolean.Atom (a, b) -> - begin - let open NodeSummary in - match a.Atom.node with - | Move (m, q) -> - let { NodeStatus.node = n_sum; _ } as sum = - match m with - `First_child -> fcs - | `Next_sibling -> nss - | `Parent | `Previous_sibling -> ps - | `Stay -> ss - in - if sum == dummy_status || StateSet.mem q n_sum.todo then - Unknown - else - of_bool (b == StateSet.mem q n_sum.sat) - | Is_first_child -> of_bool (b == is_left summary) - | Is_next_sibling -> of_bool (b == is_right summary) - | Is k -> of_bool (b == (k == kind summary)) - | Has_first_child -> of_bool (b == has_left summary) - | Has_next_sibling -> of_bool (b == has_right summary) - end - | Boolean.And(phi1, phi2) -> AND_ (loop phi1, loop phi2) - | Boolean.Or (phi1, phi2) -> OR_ (loop phi1, loop phi2) - end - in - loop phi - - - let eval_trans_aux auto cache2 tag fcs nss ps old_status = - let { sat = old_sat; - todo = old_todo; - summary = old_summary } as os_node = old_status.NodeStatus.node - in - let sat, todo = - StateSet.fold (fun q ((a_sat, a_todo) as acc) -> - let phi = - get_form cache2 auto tag q - in - let v = eval_form phi fcs nss ps old_status old_summary in - match v with - True -> StateSet.add q a_sat, a_todo - | False -> acc - | Unknown -> a_sat, StateSet.add q a_todo - ) old_todo (old_sat, StateSet.empty) - in - if old_sat != sat || old_todo != todo then - NodeStatus.make { os_node with sat; todo } - else old_status - - - let eval_trans auto cache2 cache5 tag fcs nss ps ss = - let rec loop old_status = - let new_status = - eval_trans_aux auto cache2 tag fcs nss ps old_status - in - if new_status == old_status then old_status else loop new_status - in - let fcsid = (fcs.NodeStatus.id :> int) in - let nssid = (nss.NodeStatus.id :> int) in - let psid = (ps.NodeStatus.id :> int) in - let ssid = (ss.NodeStatus.id :> int) in - let tagid = (tag.QName.id :> int) in - let res = Cache.N5.find cache5 tagid ssid fcsid nssid psid in - if res != dummy_status then res - else let new_status = loop ss in - Cache.N5.add cache5 tagid ssid fcsid nssid psid new_status; - new_status - - - - let top_down run = - let _i = run.pass in +let eval_trans_aux run tag summary fcs nss ps sat todo = + StateSet.fold (fun q (a_sat) -> + let phi = + get_form run tag q + in + if eval_form phi fcs nss ps a_sat summary then + StateSet.add q a_sat + else a_sat + ) todo sat + + +let rec eval_trans_fix run tag summary fcs nss ps sat todo = + let new_sat = + eval_trans_aux run tag summary fcs nss ps sat todo + in + if new_sat == sat then sat else + eval_trans_fix run tag summary fcs nss ps new_sat todo + + +let eval_trans run trans_cache tag summary fcs nss ps ss todo = + let stats = run.stats in + let fcsid = (fcs.StateSet.id :> int) in + let nssid = (nss.StateSet.id :> int) in + let psid = (ps.StateSet.id :> int) in + let ssid = (ss.StateSet.id :> int) in + let tagid = (tag.QName.id :> int) in + + let res = Cache.N6.find trans_cache tagid summary ssid fcsid nssid psid in + stats.eval_trans_cache_access <- 1 + stats.eval_trans_cache_access; + if res != dummy_set then + res + else let new_sat = if todo == StateSet.empty then ss else + eval_trans_fix run tag summary fcs nss ps ss todo + in + stats.eval_trans_cache_miss <- 1 + stats.eval_trans_cache_miss; + Cache.N6.add trans_cache tagid summary ssid fcsid nssid psid new_sat; + new_sat + + +module Make (T : Tree.S) = +struct + module Tree : Tree.S with type node = T.node = T + module ResultSet : Deque.S with type elem = Tree.node = + Deque.Make (struct type t = Tree.node end) + + + let make auto tree = + let len = Tree.size tree in + (* let ba = Array1.create int16_unsigned c_layout len in + Array1.fill ba 0; *) + let ba = Bytes.make len '\000' in + { + tree = tree; + auto = auto; + sat = (let a = Array.make len StateSet.empty in + IFHTML([a], a)); + pass = 0; + fetch_trans_cache = Cache.N2.create dummy_form; + td_cache = Cache.N6.create dummy_set; + bu_cache = Cache.N6.create dummy_set; + node_summaries = ba; + stats = { + pass = 0; + tree_size = len; + fetch_trans_cache_access = 0; + fetch_trans_cache_miss = 0; + eval_trans_cache_access = 0; + eval_trans_cache_miss = 0; + nodes_per_run = []; + } + } + + + let top_down2 run update_res = + let num_visited = ref 0 in + let i = run.pass in let tree = run.tree in let auto = run.auto in - let status = run.status in - let cache2 = run.cache2 in - let cache5 = run.cache5 in - let unstable = run.unstable in - let init_todo = StateSet.diff (Ata.get_states auto) (Ata.get_starting_states auto) in - let rec loop node = - let node_id = T.preorder tree node in - if node == T.nil || not (Bitvector.get unstable node_id) then false else begin - let parent = T.parent tree node in - let fc = T.first_child tree node in - let fc_id = T.preorder tree fc in - let ns = T.next_sibling tree node in - let ns_id = T.preorder tree ns in - let tag = T.tag tree node in + let states_by_rank = Ata.get_states_by_rank auto in + let td_todo = states_by_rank.(i) in + let bu_todo = + if i == Array.length states_by_rank - 1 then StateSet.empty + else + states_by_rank.(i+1) + in + let run_sat = run.sat in + let last_run = i >= Array.length states_by_rank - 2 in + let rec common node parent parent_sat kont = + if node == Tree.nil then StateSet.empty + else begin + incr num_visited; + let tag = Tree.tag tree node in + let node_id = Tree.preorder tree node in + let fc = Tree.first_child tree node in + let ns = Tree.next_sibling tree node in (* We enter the node from its parent *) - - let status0 = - let c = unsafe_get_status status node_id in - if c == dummy_status then - (* first time we visit the node *) - NodeStatus.make - { sat = StateSet.empty; - todo = init_todo; - summary = NodeSummary.make - (node == T.first_child tree parent) (* is_left *) - (node == T.next_sibling tree parent) (* is_right *) - (fc != T.nil) (* has_left *) - (ns != T.nil) (* has_right *) - (T.kind tree node) (* kind *) - } - else c + let summary = + let s = Char.code (Bytes.unsafe_get run.node_summaries node_id) in + if s != 0 then s else + let s = + NodeSummary.make + (node == (Tree.first_child tree parent)) (*is_left *) + (node == (Tree.next_sibling tree parent)) (*is_right *) + (fc != Tree.nil) (* has_left *) + (ns != Tree.nil) (* has_right *) + (Tree.kind tree node) (* kind *) + in + Bytes.unsafe_set run.node_summaries node_id (Char.chr s); s in - IFTRACE(html tree node _i status0 "Entering node"); - + let status0 = unsafe_get run_sat node_id in (* get the node_statuses for the first child, next sibling and parent *) - let ps = unsafe_get_status status (T.preorder tree parent) in - let fcs = unsafe_get_status status fc_id in - let nss = unsafe_get_status status ns_id in (* evaluate the transitions with all this statuses *) - let status1 = if status0.NodeStatus.node.todo == StateSet.empty then status0 else begin - let status1 = eval_trans auto cache2 cache5 tag fcs nss ps status0 in - IFTRACE(html tree node _i status1 "Updating transitions"); - (* update the cache if the status of the node changed *) - if status1 != status0 then status.(node_id) <- status1; - status1 - end - in - (* recursively traverse the first child *) - let unstable_left = loop fc in - (* here we re-enter the node from its first child, - get the new status of the first child *) - let fcs1 = unsafe_get_status status fc_id in - (* update the status *) - let status2 = if status1.NodeStatus.node.todo == StateSet.empty then status1 else begin - let status2 = eval_trans auto cache2 cache5 tag fcs1 nss ps status1 in - IFTRACE(html tree node _i status2 "Updating transitions (after first-child)"); - if status2 != status1 then status.(node_id) <- status2; - status2 - end + let status1 = + eval_trans run + run.td_cache tag + summary + (unsafe_get run_sat (Tree.preorder tree fc)) + (unsafe_get run_sat (Tree.preorder tree ns)) + parent_sat + status0 td_todo in - let unstable_right = loop ns in - let nss1 = unsafe_get_status status ns_id in - let status3 = if status2.NodeStatus.node.todo == StateSet.empty then status2 else begin - let status3 = eval_trans auto cache2 cache5 tag fcs1 nss1 ps status2 in - IFTRACE(html tree node _i status3 "Updating transitions (after next-sibling)"); - if status3 != status2 then status.(node_id) <- status3; - status3 - end - in - let unstable_self = - (* if either our left or right child is unstable or if we still have transitions - pending, the current node is unstable *) - unstable_left - || unstable_right - || StateSet.empty != status3.NodeStatus.node.todo - in - Bitvector.unsafe_set unstable node_id unstable_self; - IFTRACE((if not unstable_self then - Html.finalize_node - node_id - _i - Ata.(StateSet.intersect status3.NodeStatus.node.sat (get_selecting_states auto)))); - unstable_self + kont summary tag parent_sat status0 status1 fc ns node node_id end - in - run.redo <- loop (T.root tree); - run.pass <- run.pass + 1 - - let get_results run = - let cache = run.status in - let auto = run.auto in - let tree = run.tree in - let rec loop node acc = - if node == T.nil then acc - else - let acc0 = loop (T.next_sibling tree node) acc in - let acc1 = loop (T.first_child tree node) acc0 in - - if Ata.( - StateSet.intersect - cache.(T.preorder tree node).NodeStatus.node.sat - (get_selecting_states auto)) then node::acc1 - else acc1 + and kont_pure_td summary tag parent_sat status0 status1 fc ns node node_id = + unsafe_set run_sat node_id status1 status0; (* write the td_states *) + update_res false status1 node; + if fc != Tree.nil then ignore (loop_td fc node status1); + if ns == Tree.nil then StateSet.empty else loop_td ns node status1 (* tail call *) + and kont_td_and_bu summary tag parent_sat status0 status1 fc ns node node_id = + let fcs1 = if fc == Tree.nil then StateSet.empty else loop_td_and_bu fc node status1 in + let nss1 = if ns == Tree.nil then StateSet.empty else loop_td_and_bu ns node status1 in + let status2 = + eval_trans run run.bu_cache tag + summary fcs1 + nss1 + parent_sat + status1 bu_todo + in + unsafe_set run_sat node_id status2 status0; + status2 + and kont_td_and_bu_last summary tag parent_sat status0 status1 fc ns node node_id = + let nss1 = if ns == Tree.nil then StateSet.empty else loop_td_and_bu_last ns node status1 in + let fcs1 = if fc == Tree.nil then StateSet.empty else loop_td_and_bu_last fc node status1 in + let status2 = + eval_trans run run.bu_cache tag + summary fcs1 + nss1 + parent_sat + status1 bu_todo + in + unsafe_set run_sat node_id status2 status0; + if status2 != StateSet.empty then update_res true status2 node; + status2 + and loop_td node parent parent_sat = + common node parent parent_sat kont_pure_td + and loop_td_and_bu node parent parent_sat = + common node parent parent_sat kont_td_and_bu + and loop_td_and_bu_last node parent parent_sat = + common node parent parent_sat kont_td_and_bu_last in - loop (T.root tree) [] - - let get_full_results run = - let cache = run.status in - let auto = run.auto in - let tree = run.tree in - let res_mapper = Hashtbl.create MED_H_SIZE in - let () = - StateSet.iter - (fun q -> Hashtbl.add res_mapper q []) - (Ata.get_selecting_states auto) + let _ = + if bu_todo == StateSet.empty then + loop_td (Tree.root tree) Tree.nil dummy_set + else if last_run then + loop_td_and_bu_last (Tree.root tree) Tree.nil dummy_set + else + loop_td_and_bu (Tree.root tree) Tree.nil dummy_set in - let dummy = [ T.nil ] in + run.pass <- run.pass + 2; + run.stats.pass <- run.stats.pass + 1; + run.stats.nodes_per_run <- !num_visited :: run.stats.nodes_per_run + + + type res_op = Dummy | Prepend | Append | Nothing + + let mk_update_result auto = + let sel_states = Ata.get_selecting_states auto in + let res = ResultSet.create () in + let cache = Cache.N2.create Dummy in + (fun prepend sat node -> + let sat_id = (sat.StateSet.id :> int) in + let prep_id : int = Obj.magic prepend in + let op = Cache.N2.find cache prep_id sat_id in + let op = + if op == Dummy then + let op = + if StateSet.intersect sel_states sat then + if prepend then + Prepend + else Append + else Nothing + in + let () = Cache.N2.add cache prep_id sat_id op in + op + else op + in + match op with + Dummy | Nothing -> () + | Prepend -> ResultSet.push_front node res + | Append -> ResultSet.push_back node res + (* + if StateSet.intersect sel_states sat then begin + if prepend then L.push_front node res else + L.push_back node res + end*)), + (fun () -> res) + + + let mk_update_full_result auto = + let dummy = ResultSet.create () in let res_mapper = Cache.N1.create dummy in let () = StateSet.iter - (fun q -> Cache.N1.add res_mapper (q :> int) []) + (fun q -> Cache.N1.add res_mapper (q :> int) (ResultSet.create())) (Ata.get_selecting_states auto) in - let rec loop node = - if node != T.nil then - let () = loop (T.next_sibling tree node) in - let () = loop (T.first_child tree node) in - StateSet.iter - (fun q -> - let res = Cache.N1.find res_mapper (q :> int) in - if res != dummy then - Cache.N1.add res_mapper (q :> int) (node::res) - ) - cache.(T.preorder tree node).NodeStatus.node.sat - in - loop (T.root tree); - (StateSet.fold_right - (fun q acc -> (q, Cache.N1.find res_mapper (q :> int))::acc) - (Ata.get_selecting_states auto) []) - + (fun prepend sat node -> + StateSet.iter + (fun q -> + let res = Cache.N1.find res_mapper (q :> int) in + if res != dummy then begin + if prepend then ResultSet.push_front node res + else ResultSet.push_back node res + end + ) sat), + (fun () -> + StateSet.fold_right + (fun q acc -> (q, Cache.N1.find res_mapper (q :> int))::acc) + (Ata.get_selecting_states auto) []) let prepare_run run list = let tree = run.tree in let auto = run.auto in - let status = run.status in - List.iter (fun node -> - let parent = T.parent tree node in - let fc = T.first_child tree node in - let ns = T.next_sibling tree node in - let status0 = - NodeStatus.make - { sat = Ata.get_starting_states auto; - todo = - StateSet.diff (Ata.get_states auto) (Ata.get_starting_states auto); - summary = NodeSummary.make - (node == T.first_child tree parent) (* is_left *) - (node == T.next_sibling tree parent) (* is_right *) - (fc != T.nil) (* has_left *) - (ns != T.nil) (* has_right *) - (T.kind tree node) (* kind *) - } - in - let node_id = T.preorder tree node in - status.(node_id) <- status0) list + let sat = IFHTML((List.hd run.sat), run.sat) in + let sat0 = Ata.get_starting_states auto in + ResultSet.iter (fun node -> + let node_id = Tree.preorder tree node in + sat.(node_id) <- sat0) list - let compute_run auto tree nodes = + let compute_run auto tree nodes update_res = let run = make auto tree in prepare_run run nodes; - while run.redo do - top_down run + let rank = Ata.get_max_rank auto in + while run.pass <= rank do + top_down2 run update_res; + IFHTML((run.sat <- (Array.copy (List.hd run.sat)) :: run.sat), ()); + run.td_cache <- Cache.N6.create dummy_set; + run.bu_cache <- Cache.N6.create dummy_set; done; + IFHTML((run.sat <- List.tl run.sat), ()); + IFHTML(Html_trace.gen_trace auto run.sat (module T : Tree.S with type t = Tree.t) tree ,()); + run - IFTRACE(Html.gen_trace auto (module T : Tree.S with type t = T.t) tree); - run + let last_stats = ref None let full_eval auto tree nodes = - let r = compute_run auto tree nodes in - get_full_results r + let update_full,get_full = mk_update_full_result auto in + let run = compute_run auto tree nodes update_full in + last_stats := Some run.stats; + get_full () let eval auto tree nodes = - let r = compute_run auto tree nodes in - get_results r + let update_res,get_res = mk_update_result auto in + let run = compute_run auto tree nodes update_res in + last_stats := Some run.stats; + get_res () + + let stats () = match !last_stats with + Some s -> s.nodes_per_run <- List.rev s.nodes_per_run;s + | None -> failwith "Missing stats" end