X-Git-Url: http://git.nguyen.vg/gitweb/?p=tatoo.git;a=blobdiff_plain;f=src%2Frun.ml;h=887eb35cdeb2f44588923714608c64c4f89e50a2;hp=1824aebec8d311591cc88fe8a6c15f6908dfe900;hb=a96c64d15866719b4c8eb6d98ad7f1fc948e7636;hpb=f9b9f1ce524acda75c7f3583cd3751901ecd17a5 diff --git a/src/run.ml b/src/run.ml index 1824aeb..887eb35 100644 --- a/src/run.ml +++ b/src/run.ml @@ -18,215 +18,247 @@ INCLUDE "debug.ml" open Format open Misc +open Bigarray -type stats = { run : int; +type stats = { mutable pass : int; tree_size : int; - fetch_trans_cache_access : int; - fetch_trans_cache_hit : int; - eval_trans_cache_access : int; - eval_trans_cache_hit : int; + mutable fetch_trans_cache_access : int; + mutable fetch_trans_cache_miss : int; + mutable eval_trans_cache_access : int; + mutable eval_trans_cache_miss : int; + mutable nodes_per_run : int list; } -let fetch_trans_cache_hit = ref 0 -let fetch_trans_cache_access = ref 0 -let eval_trans_cache_hit = ref 0 -let eval_trans_cache_access = ref 0 -let reset_stat_counters () = - fetch_trans_cache_hit := 0; - fetch_trans_cache_access := 0; - eval_trans_cache_hit := 0; - eval_trans_cache_access := 0 - - -module Make (T : Tree.S) = - struct - - module NodeSummary = - struct - (* Pack into an integer the result of the is_* and has_ predicates - for a given node *) - type t = int - let dummy = -1 - (* - ...44443210 - ...4444 -> kind - 3 -> has_right - 2 -> has_left - 1 -> is_right - 0 -> is_left - *) - let is_left (s : t) : bool = - s land 1 != 0 - - let is_right (s : t) : bool = - s land 0b10 != 0 - - let has_left (s : t) : bool = - s land 0b100 != 0 - - let has_right (s : t) : bool = - s land 0b1000 != 0 - - let kind (s : t) : Tree.NodeKind.t = - Obj.magic (s lsr 4) - - let make is_left is_right has_left has_right kind = - (int_of_bool is_left) lor - ((int_of_bool is_right) lsl 1) lor - ((int_of_bool has_left) lsl 2) lor - ((int_of_bool has_right) lsl 3) lor - ((Obj.magic kind) lsl 4) - end - - let dummy_set = StateSet.singleton State.dummy - open Bigarray - type run = { - tree : T.t ; +module NodeSummary = +struct + (* Pack into an integer the result of the is_* and has_ predicates + for a given node *) + type t = int + let dummy = -1 + (* + ...44443210 + ...4444 -> kind + 3 -> has_right + 2 -> has_left + 1 -> is_right + 0 -> is_left + *) + let is_left (s : t) : bool = + s land 1 != 0 + + let is_right (s : t) : bool = + s land 0b10 != 0 + + let has_left (s : t) : bool = + s land 0b100 != 0 + + let has_right (s : t) : bool = + s land 0b1000 != 0 + + let kind (s : t) : Tree.NodeKind.t = + Obj.magic (s lsr 4) + + let make is_left is_right has_left has_right kind = + (int_of_bool is_left) lor + ((int_of_bool is_right) lsl 1) lor + ((int_of_bool has_left) lsl 2) lor + ((int_of_bool has_right) lsl 3) lor + ((Obj.magic kind) lsl 4) +end + +let dummy_set = StateSet.singleton State.dummy_state + + + + IFDEF HTMLTRACE + THEN +type sat_array = StateSet.t array list + DEFINE IFHTML(a,b) = (a) + ELSE +type sat_array = StateSet.t array + DEFINE IFHTML(a,b) = (b) + END + +let unsafe_get a i = + if i < 0 then StateSet.empty else + Array.unsafe_get (IFHTML(List.hd a, a)) i + +let unsafe_set a i v old_v = + if v != old_v then + Array.unsafe_set (IFHTML(List.hd a, a)) i v + +type 'a run = { + tree : 'a ; (* The argument of the run *) - auto : Ata.t; + auto : Ata.t; (* The automaton to be run *) - sat: StateSet.t array; + mutable sat: sat_array; (* A mapping from node preorders to states satisfied at that node *) - mutable pass : int; + mutable pass : int; (* Number of run we have performed *) - mutable fetch_trans_cache : Ata.Formula.t Cache.N2.t; + mutable fetch_trans_cache : Ata.Formula.t Cache.N2.t; (* A cache from states * label to list of transitions *) - mutable td_cache : StateSet.t Cache.N6.t; - mutable bu_cache : StateSet.t Cache.N6.t; + mutable td_cache : StateSet.t Cache.N6.t; + mutable bu_cache : StateSet.t Cache.N6.t; (* Two 6-way caches used during the top-down and bottom-up phase label * self-set * fc-set * ns-set * parent-set * node-shape -> self-set *) - node_summaries: (int, int16_unsigned_elt, c_layout) Array1.t; - } - - - let dummy_form = Ata.Formula.stay State.dummy - - let make auto tree = - let len = T.size tree in - { - tree = tree; - auto = auto; - sat = Array.create len StateSet.empty; - pass = 0; - fetch_trans_cache = Cache.N2.create dummy_form; - td_cache = Cache.N6.create dummy_set; - bu_cache = Cache.N6.create dummy_set; - node_summaries = let ba = Array1.create int16_unsigned c_layout len in - Array1.fill ba 0; ba - } - - let get_form fetch_trans_cache auto tag q = - let phi = - incr fetch_trans_cache_access; - Cache.N2.find fetch_trans_cache (tag.QName.id :> int) (q :> int) - in - if phi == dummy_form then - let phi = Ata.get_form auto tag q in - let () = - Cache.N2.add - fetch_trans_cache - (tag.QName.id :> int) - (q :> int) phi - in phi - else begin - incr fetch_trans_cache_hit; - phi - end - - - let eval_form phi fcs nss ps ss summary = - let open Ata in - let rec loop phi = - begin match Formula.expr phi with - | Boolean.False -> false - | Boolean.True -> true - | Boolean.Atom (a, b) -> - begin - let open NodeSummary in - match a.Atom.node with - | Move (m, q) -> - b && StateSet.mem q ( - match m with - `First_child -> fcs - | `Next_sibling -> nss - | `Parent | `Previous_sibling -> ps - | `Stay -> ss - ) - | Is_first_child -> b == is_left summary - | Is_next_sibling -> b == is_right summary - | Is k -> b == (k == kind summary) - | Has_first_child -> b == has_left summary - | Has_next_sibling -> b == has_right summary - end - | Boolean.And(phi1, phi2) -> loop phi1 && loop phi2 - | Boolean.Or (phi1, phi2) -> loop phi1 || loop phi2 - end - in - loop phi - - - let eval_trans_aux auto fetch_trans_cache tag fcs nss ps sat todo summary = - StateSet.fold (fun q (a_sat) -> - let phi = - get_form fetch_trans_cache auto tag q - in - if eval_form phi fcs nss ps a_sat summary then - StateSet.add q a_sat - else a_sat - ) todo sat - - - let rec eval_trans_fix auto fetch_trans_cache tag fcs nss ps sat todo summary = - let new_sat = - eval_trans_aux auto fetch_trans_cache tag fcs nss ps sat todo summary - in - if new_sat == sat then sat else - eval_trans_fix auto fetch_trans_cache tag fcs nss ps new_sat todo summary - - - let eval_trans auto fetch_trans_cache eval_cache tag fcs nss ps ss todo summary = - let fcsid = (fcs.StateSet.id :> int) in - let nssid = (nss.StateSet.id :> int) in - let psid = (ps.StateSet.id :> int) in - let ssid = (ss.StateSet.id :> int) in - let tagid = (tag.QName.id :> int) in - let res = Cache.N6.find eval_cache tagid summary ssid fcsid nssid psid in - incr eval_trans_cache_access; - if res != dummy_set then begin incr eval_trans_cache_hit; res end - else let new_sat = - eval_trans_fix auto fetch_trans_cache tag fcs nss ps ss todo summary - in - Cache.N6.add eval_cache tagid summary ssid fcsid nssid psid new_sat; - new_sat - + node_summaries: (int, int16_unsigned_elt, c_layout) Array1.t; + stats : stats; +} + +let dummy_form = Ata.Formula.stay State.dummy_state + +let get_form run tag (q : State.t) = + let auto = run.auto in + let fetch_trans_cache = run.fetch_trans_cache in + let stats = run.stats in + let phi = + stats.fetch_trans_cache_access <- stats.fetch_trans_cache_access + 1; + Cache.N2.find fetch_trans_cache (tag.QName.id :> int) (q :> int) + in + if phi == dummy_form then + let phi = Ata.get_form auto tag q in + let () = + stats.fetch_trans_cache_miss <- stats.fetch_trans_cache_miss + 1; + Cache.N2.add + fetch_trans_cache + (tag.QName.id :> int) + (q :> int) phi + in phi + else + phi + + + +let eval_form phi fcs nss ps ss summary = + let open Ata in + let rec loop phi = + begin match Formula.expr phi with + | Boolean.False -> false + | Boolean.True -> true + | Boolean.Atom (a, b) -> + begin + let open NodeSummary in + match a.Atom.node with + | Move (m, q) -> + b && StateSet.mem q ( + match m with + `First_child -> fcs + | `Next_sibling -> nss + | `Parent | `Previous_sibling -> ps + | `Stay -> ss + ) + | Is_first_child -> b == is_left summary + | Is_next_sibling -> b == is_right summary + | Is k -> b == (k == kind summary) + | Has_first_child -> b == has_left summary + | Has_next_sibling -> b == has_right summary + end + | Boolean.And(phi1, phi2) -> loop phi1 && loop phi2 + | Boolean.Or (phi1, phi2) -> loop phi1 || loop phi2 + end + in + loop phi - let unsafe_get a i = if i < 0 then StateSet.empty else Array.unsafe_get a i - let top_down run = +let eval_trans_aux run tag summary fcs nss ps sat todo = + StateSet.fold (fun q (a_sat) -> + let phi = + get_form run tag q + in + if eval_form phi fcs nss ps a_sat summary then + StateSet.add q a_sat + else a_sat + ) todo sat + + +let rec eval_trans_fix run tag summary fcs nss ps sat todo = + let new_sat = + eval_trans_aux run tag summary fcs nss ps sat todo + in + if new_sat == sat then sat else + eval_trans_fix run tag summary fcs nss ps new_sat todo + + +let eval_trans run trans_cache tag summary fcs nss ps ss todo = + let stats = run.stats in + let fcsid = (fcs.StateSet.id :> int) in + let nssid = (nss.StateSet.id :> int) in + let psid = (ps.StateSet.id :> int) in + let ssid = (ss.StateSet.id :> int) in + let tagid = (tag.QName.id :> int) in + + let res = Cache.N6.find trans_cache tagid summary ssid fcsid nssid psid in + stats.eval_trans_cache_access <- 1 + stats.eval_trans_cache_access; + if res != dummy_set then + res + else let new_sat = + eval_trans_fix run tag summary fcs nss ps ss todo + in + stats.eval_trans_cache_miss <- 1 + stats.eval_trans_cache_miss; + Cache.N6.add trans_cache tagid summary ssid fcsid nssid psid new_sat; + new_sat + + +module Make (T : Tree.S) (L : Deque.S with type elem = T.node) = +struct + + let make auto tree = + let len = T.size tree in + let ba = Array1.create int16_unsigned c_layout len in + Array1.fill ba 0; + { + tree = tree; + auto = auto; + sat = (let a = Array.make len StateSet.empty in + IFHTML([a], a)); + pass = 0; + fetch_trans_cache = Cache.N2.create dummy_form; + td_cache = Cache.N6.create dummy_set; + bu_cache = Cache.N6.create dummy_set; + node_summaries = ba; + stats = { + pass = 0; + tree_size = len; + fetch_trans_cache_access = 0; + fetch_trans_cache_miss = 0; + eval_trans_cache_access = 0; + eval_trans_cache_miss = 0; + nodes_per_run = []; + } + } + + + let top_down run update_res = + let num_visited = ref 0 in let i = run.pass in let tree = run.tree in let auto = run.auto in let states_by_rank = Ata.get_states_by_rank auto in let td_todo = states_by_rank.(i) in - let bu_todo = if i + 1 = Array.length states_by_rank then StateSet.empty + let bu_todo = + if i == Array.length states_by_rank - 1 then StateSet.empty else states_by_rank.(i+1) in + let last_run = i >= Array.length states_by_rank - 2 in let rec loop_td_and_bu node parent parent_sat = - if node == T.nil then StateSet.empty else begin + if node == T.nil then StateSet.empty + else begin + incr num_visited; + let tag = T.tag tree node in let node_id = T.preorder tree node in let fc = T.first_child tree node in let ns = T.next_sibling tree node in - let tag = T.tag tree node in - (* We enter the node from its parent *) + (* We enter the node from its parent *) let summary = let s = Array1.unsafe_get run.node_summaries node_id in if s != 0 then s else let s = NodeSummary.make - (node == T.first_child tree parent) (*is_left *) - (node == T.next_sibling tree parent)(*is_right *) + (node == (T.first_child tree parent)) (*is_left *) + (node == (T.next_sibling tree parent)) (*is_right *) (fc != T.nil) (* has_left *) (ns != T.nil) (* has_right *) (T.kind tree node) (* kind *) @@ -235,128 +267,127 @@ module Make (T : Tree.S) = in let status0 = unsafe_get run.sat node_id in (* get the node_statuses for the first child, next sibling and parent *) - let fcs = unsafe_get run.sat (T.preorder tree fc) in - let nss = unsafe_get run.sat (T.preorder tree ns) in (* evaluate the transitions with all this statuses *) let status1 = - eval_trans auto run.fetch_trans_cache run.td_cache tag fcs nss + eval_trans run + run.td_cache tag + summary + (unsafe_get run.sat (T.preorder tree fc)) + (unsafe_get run.sat (T.preorder tree ns)) parent_sat - status0 td_todo summary + status0 td_todo in - (* update the cache if the status of the node changed *) - if status1 != status0 then run.sat.(node_id) <- status1; - let fcs1 = loop_td_and_bu fc node status1 in - if bu_todo == StateSet.empty then + (* update the cache if the status of the node changed + unsafe_set run.sat node_id status1 status0;*) + if bu_todo == StateSet.empty then begin + unsafe_set run.sat node_id status1 status0; (* write the td_states *) + update_res false status1 node; + let _ = loop_td_and_bu fc node status1 in loop_td_and_bu ns node status1 (* tail call *) - else - let nss1 = loop_td_and_bu ns node status1 in + end else + let fcs1, nss1 = + if last_run then + let nss1 = loop_td_and_bu ns node status1 in + let fcs1 = loop_td_and_bu fc node status1 in + fcs1, nss1 + else + let fcs1 = loop_td_and_bu fc node status1 in + let nss1 = loop_td_and_bu ns node status1 in + fcs1, nss1 + in let status2 = - eval_trans auto run.fetch_trans_cache run.bu_cache tag fcs1 nss1 + eval_trans run run.bu_cache tag + summary fcs1 + nss1 parent_sat - status1 bu_todo summary + status1 bu_todo in - if status2 != status1 then run.sat.(node_id) <- status2; + unsafe_set run.sat node_id status2 status0; + if last_run && status2 != StateSet.empty then update_res true status2 node; status2 end in - let _ = loop_td_and_bu (T.root tree) T.nil StateSet.empty in - run.pass <- run.pass + 2 + let _ = loop_td_and_bu (T.root tree) T.nil dummy_set in + run.pass <- run.pass + 2; + run.stats.pass <- run.stats.pass + 1; + run.stats.nodes_per_run <- !num_visited :: run.stats.nodes_per_run - let get_results run = - let cache = run.sat in - let auto = run.auto in - let tree = run.tree in - let sel_states = Ata.get_selecting_states auto in - let rec loop node acc = - if node == T.nil then acc - else - let acc0 = loop (T.next_sibling tree node) acc in - let acc1 = loop (T.first_child tree node) acc0 in - if StateSet.intersect - cache.(T.preorder tree node)(* NodeStatus.node.sat *) - sel_states then node::acc1 - else acc1 - in - loop (T.root tree) [] + let mk_update_result auto = + let sel_states = Ata.get_selecting_states auto in + let res = L.create () in + (fun prepend sat node -> + if StateSet.intersect sel_states sat then begin + if prepend then L.push_front node res else + L.push_back node res + end), + (fun () -> res) - let get_full_results run = - let cache = run.sat(*tatus*) in - let auto = run.auto in - let tree = run.tree in - let res_mapper = Hashtbl.create MED_H_SIZE in - let () = - StateSet.iter - (fun q -> Hashtbl.add res_mapper q []) - (Ata.get_selecting_states auto) - in - let dummy = [ T.nil ] in + let mk_update_full_result auto = + let dummy = L.create () in let res_mapper = Cache.N1.create dummy in let () = StateSet.iter - (fun q -> Cache.N1.add res_mapper (q :> int) []) + (fun q -> Cache.N1.add res_mapper (q :> int) (L.create())) (Ata.get_selecting_states auto) in - let rec loop node = - if node != T.nil then - let () = loop (T.next_sibling tree node) in - let () = loop (T.first_child tree node) in - StateSet.iter - (fun q -> - let res = Cache.N1.find res_mapper (q :> int) in - if res != dummy then - Cache.N1.add res_mapper (q :> int) (node::res) - ) - cache.(T.preorder tree node)(* NodeStatus.node.sat *) - in - loop (T.root tree); - (StateSet.fold_right - (fun q acc -> (q, Cache.N1.find res_mapper (q :> int))::acc) - (Ata.get_selecting_states auto) []) - + (fun prepend sat node -> + StateSet.iter + (fun q -> + let res = Cache.N1.find res_mapper (q :> int) in + if res != dummy then begin + if prepend then L.push_front node res + else L.push_back node res + end + ) sat), + (fun () -> + StateSet.fold_right + (fun q acc -> (q, Cache.N1.find res_mapper (q :> int))::acc) + (Ata.get_selecting_states auto) []) let prepare_run run list = let tree = run.tree in let auto = run.auto in + let sat = IFHTML((List.hd run.sat), run.sat) in let sat0 = Ata.get_starting_states auto in - List.iter (fun node -> + L.iter (fun node -> let node_id = T.preorder tree node in - run.sat.(node_id) <- sat0) list + sat.(node_id) <- sat0) list - let tree_size = ref 0 - let pass = ref 0 - let compute_run auto tree nodes = - pass := 0; - tree_size := T.size tree; + + let compute_run auto tree nodes update_res = let run = make auto tree in prepare_run run nodes; let rank = Ata.get_max_rank auto in while run.pass <= rank do - top_down run; + top_down run update_res; + IFHTML((run.sat <- (Array.copy (List.hd run.sat)) :: run.sat), ()); run.td_cache <- Cache.N6.create dummy_set; run.bu_cache <- Cache.N6.create dummy_set; done; - pass := Ata.get_max_rank auto + 1; - + IFHTML((run.sat <- List.tl run.sat), ()); + IFHTML(Html_trace.gen_trace auto run.sat (module T : Tree.S with type t = T.t) tree ,()); run + + let last_stats = ref None + let full_eval auto tree nodes = - let r = compute_run auto tree nodes in - get_full_results r + let update_full,get_full = mk_update_full_result auto in + let run = compute_run auto tree nodes update_full in + last_stats := Some run.stats; + get_full () let eval auto tree nodes = - let r = compute_run auto tree nodes in - get_results r - - let stats () = { - tree_size = !tree_size; - run = !pass; - fetch_trans_cache_access = !fetch_trans_cache_access; - fetch_trans_cache_hit = !fetch_trans_cache_hit; - eval_trans_cache_access = !eval_trans_cache_access; - eval_trans_cache_hit = !eval_trans_cache_hit; - } + let update_res,get_res = mk_update_result auto in + let run = compute_run auto tree nodes update_res in + last_stats := Some run.stats; + get_res () + + let stats () = match !last_stats with + Some s -> s.nodes_per_run <- List.rev s.nodes_per_run;s + | None -> failwith "Missing stats" end